Home
Class 11
MATHS
If cosec theta - cot theta = 1/2, 0 lt ...

If `cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, ` then `cos theta ` is equal to

A

`(-3)/(5)`

B

`-(5)/(3)`

C

`5/3`

D

`3/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc \theta - \cot \theta = \frac{1}{2} \) for \( \cos \theta \), we will follow these steps: ### Step 1: Rewrite the equation in terms of sine and cosine. We know that: \[ \csc \theta = \frac{1}{\sin \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] Substituting these into the equation gives: \[ \frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta} = \frac{1}{2} \] This simplifies to: \[ \frac{1 - \cos \theta}{\sin \theta} = \frac{1}{2} \] ### Step 2: Cross-multiply to eliminate the fraction. Cross-multiplying gives: \[ 2(1 - \cos \theta) = \sin \theta \] ### Step 3: Use the Pythagorean identity. We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Therefore, we can express \( \sin \theta \) in terms of \( \cos \theta \): \[ \sin \theta = \sqrt{1 - \cos^2 \theta} \] Substituting this into the equation from Step 2 gives: \[ 2(1 - \cos \theta) = \sqrt{1 - \cos^2 \theta} \] ### Step 4: Square both sides to eliminate the square root. Squaring both sides results in: \[ 4(1 - \cos \theta)^2 = 1 - \cos^2 \theta \] Expanding the left side: \[ 4(1 - 2\cos \theta + \cos^2 \theta) = 1 - \cos^2 \theta \] This simplifies to: \[ 4 - 8\cos \theta + 4\cos^2 \theta = 1 - \cos^2 \theta \] ### Step 5: Rearrange the equation. Bringing all terms to one side gives: \[ 5\cos^2 \theta - 8\cos \theta + 3 = 0 \] ### Step 6: Solve the quadratic equation. Using the quadratic formula \( \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = 5, \quad b = -8, \quad c = 3 \] Calculating the discriminant: \[ b^2 - 4ac = (-8)^2 - 4 \cdot 5 \cdot 3 = 64 - 60 = 4 \] Now substituting into the quadratic formula: \[ \cos \theta = \frac{8 \pm \sqrt{4}}{2 \cdot 5} = \frac{8 \pm 2}{10} \] This gives us two possible solutions: \[ \cos \theta = \frac{10}{10} = 1 \quad \text{or} \quad \cos \theta = \frac{6}{10} = \frac{3}{5} \] ### Step 7: Determine the valid solution. Since \( 0 < \theta < \frac{\pi}{2} \), \( \cos \theta \) must be positive. Thus, we discard \( \cos \theta = 1 \) as it corresponds to \( \theta = 0 \), which is not in the range given. Therefore, the valid solution is: \[ \cos \theta = \frac{3}{5} \] ### Final Answer: \[ \cos \theta = \frac{3}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|39 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

If sintheta-cos theta=0 and 0 lt theta le pi//2. then theta is equal to :

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

If l cos^2 theta + m sin^2 theta =(cos^2 theta (cosec^2theta +1))/(cosec^2 theta -1), 0^@ lt theta lt 90^@ , then tan theta is equal to

If sin theta + 2 cos theta = 1, where 0 lt theta lt (pi)/(2), then what is 2 sin theta - cos theta equal to ?

If sin theta + 2cos theta = -1 , where 0 lt theta lt pi/2 , what is 2 sin theta - cos theta equal to ?

If sintheta + cos theta = (1+ sqrt(3))/2 , where 0 lt theta lt pi/2 , then what is tantheta + cot theta equal to ?

If tan8 theta = cot 2 theta , where 0 lt 8 theta lt pi/2 , then what is the value of tan 5 theta ?

If 8 cos 2 theta + 8 sec 2theta = 65, 0 lt theta lt (pi)/(2) then the value of 4 cos 4 theta is

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS -COMPETITIVE THINKING
  1. If (3pi)/4 < alpha < pi , then sqrt(cosec ^2alpha+2cotalpha) is equal ...

    Text Solution

    |

  2. If cosectheta-cottheta=2017 , then quadrant in which theta lies is

    Text Solution

    |

  3. If cosec theta - cot theta = 1/2, 0 lt theta lt pi/2, then cos theta...

    Text Solution

    |

  4. If cosec A + cot A =11/2 , then tan A equal to

    Text Solution

    |

  5. If sec theta + tan theta =p, then tan theta is equal to

    Text Solution

    |

  6. If t a ntheta+s e ctheta, then costheta equals (e^x+e^(-x))/2 (b) 2/(...

    Text Solution

    |

  7. If sin theta + cos theta =1 then sin theta cos theta =

    Text Solution

    |

  8. If 3 sin A+5 cos A =5, then the value of (3 cos A-5 sin A )^(2) is

    Text Solution

    |

  9. If sectheta=m, tantheta = n, then 1/m{(m+n)+1/(m+n)}

    Text Solution

    |

  10. If sintheta +cos theta =m and sec theta + cosec theta =n then n(m+1)(m...

    Text Solution

    |

  11. If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then ...

    Text Solution

    |

  12. If tan theta + sin theta = 1, " then" cos^(2) theta = n " then" m^(2)...

    Text Solution

    |

  13. If (secalpha+tanalpha)(secbeta+tanbeta)(secgamma+tangamma)=tanalphatan...

    Text Solution

    |

  14. If Pn = cos^n theta+ sin^n theta then 2P6-3P4 + 1 =

    Text Solution

    |

  15. Prove: (secA+tanA-1)(secA-tanA+1)=2tanA

    Text Solution

    |

  16. 17.cos^4theta- sin^4theta is equal to (a) 1 -2 sin^2(theta/2) (b)2c...

    Text Solution

    |

  17. Prove each of the following identities : (i) sin^(6) theta + cos^(6...

    Text Solution

    |

  18. Find the value of 6(sin^6theta+cos^6theta)-9(sin^4theta+cos^4theta)+...

    Text Solution

    |

  19. If sinx+sin^2x=1, then find the value of cos^(12)x +3cos^(10)x + 3 cos...

    Text Solution

    |

  20. The value of k, for which (cos x+ sin x)^(2) +k sin x cos x-1 =0 is...

    Text Solution

    |