Home
Class 11
MATHS
If 2y cos theta =x sin theta and 2x sec ...

If `2y cos theta =x sin theta and 2x sec theta -y cosec theta =3,` then `x ^(2) +4y^(2)=`

A

4

B

`-4`

C

`-2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the following equations: 1. \( 2y \cos \theta = x \sin \theta \) (Equation 1) 2. \( 2x \sec \theta - y \csc \theta = 3 \) (Equation 2) We need to find the value of \( x^2 + 4y^2 \). ### Step 1: Rearranging Equation 1 From Equation 1, we can express \( x \) in terms of \( y \): \[ x = \frac{2y \cos \theta}{\sin \theta} \] ### Step 2: Substitute \( x \) in Equation 2 Now, substitute \( x \) into Equation 2: \[ 2\left(\frac{2y \cos \theta}{\sin \theta}\right) \sec \theta - y \csc \theta = 3 \] ### Step 3: Simplifying the Equation Recall that \( \sec \theta = \frac{1}{\cos \theta} \) and \( \csc \theta = \frac{1}{\sin \theta} \). Substitute these into the equation: \[ 2\left(\frac{2y \cos \theta}{\sin \theta}\right) \cdot \frac{1}{\cos \theta} - y \cdot \frac{1}{\sin \theta} = 3 \] This simplifies to: \[ \frac{4y}{\sin \theta} - \frac{y}{\sin \theta} = 3 \] Combining the terms gives: \[ \frac{3y}{\sin \theta} = 3 \] ### Step 4: Solve for \( y \) Multiplying both sides by \( \sin \theta \): \[ 3y = 3 \sin \theta \] Dividing by 3: \[ y = \sin \theta \] ### Step 5: Substitute \( y \) back to find \( x \) Now substitute \( y \) back into the expression for \( x \): \[ x = \frac{2(\sin \theta) \cos \theta}{\sin \theta} = 2 \cos \theta \] ### Step 6: Calculate \( x^2 + 4y^2 \) Now we can find \( x^2 + 4y^2 \): \[ x^2 = (2 \cos \theta)^2 = 4 \cos^2 \theta \] \[ 4y^2 = 4(\sin \theta)^2 = 4 \sin^2 \theta \] Thus, \[ x^2 + 4y^2 = 4 \cos^2 \theta + 4 \sin^2 \theta \] Factoring out the 4: \[ x^2 + 4y^2 = 4(\cos^2 \theta + \sin^2 \theta) \] Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ x^2 + 4y^2 = 4 \cdot 1 = 4 \] ### Final Answer Thus, the value of \( x^2 + 4y^2 \) is: \[ \boxed{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|39 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos

Similar Questions

Explore conceptually related problems

If 2y cos theta= xsin theta and 2x sec theta-y cosec theta=3 then x^2/4+y^2=

If 0 lt lt theta lt pi/4, 2 y cos theta=x sin theta and 2 x sec theta+y cosec theta=5 , then value of x^2+4 y^2 is

Knowledge Check

  • If 2ycos theta =x sin theta and 2x sectheta -y "cosec"theta =3 , then the relation between x and y is:

    A
    `2x^(2) + y^(2)=2`
    B
    `x^(2) + 4y^(2) =4`
    C
    `x^(2) + 4y^(2) =1`
    D
    `4x^(2) + y^(2) = 4`
  • If x = a cos^(2) theta sin theta and y = a sin^(2) theta cos theta , then ( x^(2) + y^(2))^(3) is

    A
    `a^(2) x^(2) //y^(2)`
    B
    `a^(2) x^(2) y ^(2)`
    C
    `a^(2) ( x^(2) - y^(2))`
    D
    none
  • If x = sec theta - tan theta and y = cosec theta + cot theta , then

    A
    `xy +1 =x-y`
    B
    `xy +1 =y-x`
    C
    `xy +1 = x+y`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    If 2ycos = xsin theta and 2 x sec theta -y cosec theta = 3 , then the value of x^2+ 4y^2 is यदि 2ycos = xsin theta and 2 x sec theta -y cosec theta = 3 हो, तो x^2+ 4y^2 का मान क्या होगा?

    If xcos theta- y sin theta =a, x sin theta + y cos theta = b , prove that: x^(2) + y^(2) = a^(2) + b^(2) .

    If x=a cos theta + b sin theta and y=a sin theta - b cos theta. then a ^(2) +b^(2) is equal to

    If x ="cosec"theta - sin theta and y=sectheta - costheta , then the value of x^(2)y^(2)(x^(2) + y^(2) + 3) is:

    If x sin^(3) theta + y cos^(3) theta = sin theta cos theta and x sin theta = y cos theta , then the value of x^(2) + y^(2) is :