Home
Class 11
MATHS
cos 38^(@) cos 8^(@) + sin 38^(@)sin 8^(...

`cos 38^(@) cos 8^(@) + sin 38^(@)sin 8^(@) ` is equal to

A

`cos 30^(@)`

B

`cos 60^(@)`

C

`cos 45^(@)`

D

`cos 38^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos 38^\circ \cos 8^\circ + \sin 38^\circ \sin 8^\circ \), we can use the cosine of the difference of angles formula. ### Step-by-step Solution: 1. **Identify the formula**: We will use the cosine of the sum formula: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Here, \( A = 38^\circ \) and \( B = 8^\circ \). 2. **Substitute the values**: Substitute \( A \) and \( B \) into the formula: \[ \cos(38^\circ - 8^\circ) = \cos 38^\circ \cos 8^\circ + \sin 38^\circ \sin 8^\circ \] 3. **Calculate the angle**: Now, calculate \( 38^\circ - 8^\circ \): \[ 38^\circ - 8^\circ = 30^\circ \] 4. **Write the final expression**: Thus, we can write: \[ \cos(30^\circ) = \cos 38^\circ \cos 8^\circ + \sin 38^\circ \sin 8^\circ \] 5. **Evaluate \( \cos(30^\circ) \)**: We know that: \[ \cos(30^\circ) = \frac{\sqrt{3}}{2} \] 6. **Final answer**: Therefore, the expression \( \cos 38^\circ \cos 8^\circ + \sin 38^\circ \sin 8^\circ \) is equal to: \[ \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

cos38^(@)cos52^(@)-sin38^(@)sin52^(@)=0

sin38^(@)+sin22^(@)=sin82^(@)

(cos 70^(@))/(sin 20^(@)) + (cos 59^(@))/(sin 31^(@) ) - 8 sin^(2) 30^(@) is equal to

(cos 20^(@)+8 sin 70^(@) sin 50^(@) sin 10^(@))/( sin^(2)80^(@)) is equal to

The value of (sin 38^(@) - cos 68^(@))/( cos 68^(@) + sin 38^(@) is

The value of cos38^(@)cos52^(@)-sin38^(@)sin52^(@) is :

Evaluate : cos 38^@ cos 52^@ - sin 38^@ sin 52^@ .

Prove that (cos 8^(@) - sin 8^(@))/(cos 8^(@) + sin 8^(@)) = tan 37^(@)