Home
Class 11
MATHS
1/3 (sqrt3 cos 23^(@) - sin 23^(@))=...

`1/3 (sqrt3 cos 23^(@) - sin 23^(@))=`

A

`cos 43^(@) `

B

` cos 7^(@)`

C

`1/4 cos 53^(@)`

D

` 2/3 cos 53^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{3} (\sqrt{3} \cos 23^\circ - \sin 23^\circ) \), we will follow these steps: ### Step 1: Factor out the common term We start with the expression: \[ \frac{1}{3} (\sqrt{3} \cos 23^\circ - \sin 23^\circ) \] ### Step 2: Identify the cosine of a compound angle We can rewrite the expression inside the parentheses using the cosine of a sum formula. The cosine of a sum is given by: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] We want to express \( \sqrt{3} \cos 23^\circ - \sin 23^\circ \) in a similar form. ### Step 3: Recognize the coefficients Notice that \( \sqrt{3} \) is the coefficient of \( \cos 23^\circ \) and \( -1 \) is the coefficient of \( \sin 23^\circ \). This suggests that we can relate it to the cosine of a specific angle. ### Step 4: Rewrite using known angles We know that: \[ \sqrt{3} = 2 \cos 30^\circ \quad \text{and} \quad -1 = -2 \sin 30^\circ \] Thus, we can rewrite the expression as: \[ \sqrt{3} \cos 23^\circ - \sin 23^\circ = 2 \left( \cos 30^\circ \cos 23^\circ - \sin 30^\circ \sin 23^\circ \right) \] ### Step 5: Apply the cosine of a sum formula Using the cosine of a sum formula: \[ \sqrt{3} \cos 23^\circ - \sin 23^\circ = 2 \cos(30^\circ + 23^\circ) = 2 \cos(53^\circ) \] ### Step 6: Substitute back into the original expression Now substituting back into our original equation: \[ \frac{1}{3} (2 \cos 53^\circ) = \frac{2}{3} \cos 53^\circ \] ### Final Result Thus, the simplified expression is: \[ \frac{2}{3} \cos 53^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of (sqrt(3) cos 23^(@) - sin 23^(@))/(2)

(1)/(4)[sqrt(3)cos23^(@)-sin23^(@)]=

(1)/(4)(sqrt(3)cos23^(@)-sin23^(@)) is equal to

The value of (sin 20^(@)cos70^(@)+ cos20^(@)sin70^(@))/(sin23^(@)"cosec"23^(@)+cos23^(@)sec23^(@)) is _________.

Simplify: (1)/(2)[(sqrt(3)/2)cos23° -(1/2)sin 23°]

(sin75^(@) - sin 15^(@))/(cos 75^(@) + cos 15^(@)) A) -sqrt3 B) sqrt3 C) (1)/(sqrt3) D) (1)/(sqrt3)