Home
Class 11
MATHS
sin 10^(@) + sin 20^(@) + sin30^(@) +…+ ...

`sin 10^(@) + sin 20^(@) + sin30^(@) +…+ sin 360^(@) ` is equal to

A

0

B

1

C

`-1`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin 10^\circ + \sin 20^\circ + \sin 30^\circ + \ldots + \sin 360^\circ \), we can use the properties of the sine function, particularly the periodicity and symmetry of the sine function. ### Step-by-step Solution: 1. **Identify the series**: The series consists of sine values from \( \sin 10^\circ \) to \( \sin 360^\circ \) in increments of \( 10^\circ \). Thus, we can express the series as: \[ S = \sin 10^\circ + \sin 20^\circ + \sin 30^\circ + \ldots + \sin 360^\circ \] 2. **Group the terms**: Notice that sine has a periodicity of \( 360^\circ \) and the property \( \sin(360^\circ - \theta) = -\sin(\theta) \). We can pair the terms: - \( \sin 10^\circ \) and \( \sin 350^\circ \) - \( \sin 20^\circ \) and \( \sin 340^\circ \) - \( \sin 30^\circ \) and \( \sin 330^\circ \) - ... - \( \sin 170^\circ \) and \( \sin 190^\circ \) - \( \sin 180^\circ \) 3. **Calculate the pairs**: Each pair can be simplified: \[ \sin 10^\circ + \sin 350^\circ = \sin 10^\circ - \sin 10^\circ = 0 \] \[ \sin 20^\circ + \sin 340^\circ = \sin 20^\circ - \sin 20^\circ = 0 \] Continuing this way, we find that: \[ \sin 30^\circ + \sin 330^\circ = \sin 30^\circ - \sin 30^\circ = 0 \] \[ \sin 40^\circ + \sin 320^\circ = \sin 40^\circ - \sin 40^\circ = 0 \] This pattern continues until: \[ \sin 170^\circ + \sin 190^\circ = \sin 170^\circ - \sin 170^\circ = 0 \] 4. **Consider the middle term**: The only term that does not have a pair is \( \sin 180^\circ \), which is equal to 0. 5. **Combine all results**: Since all pairs sum to zero and the middle term is also zero, we conclude: \[ S = 0 \] ### Final Answer: Thus, the value of \( \sin 10^\circ + \sin 20^\circ + \sin 30^\circ + \ldots + \sin 360^\circ \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

The value of sin 10^(@) sin 30^(@) sin 50^(@) sin 70^(@) is equal to .

The value of sin10^(@)+2sin20^(@)+sin30^(@)+….+sin360^(@) is equal to

The value of sin10^(@)+sin20^(@)+sin30^(@)...+sin360^(@) is equal to -

The value of sin 50^(@) - sin70^(@) + sin 10^(@) is equal to

(cos 20^(@)+8 sin 70^(@) sin 50^(@) sin 10^(@))/( sin^(2)80^(@)) is equal to