Home
Class 11
MATHS
The value of : sin^(2)(pi/8)+sin^(2)((...

The value of :
`sin^(2)(pi/8)+sin^(2)((3pi)/8)+sin^(2)((5pi)/8)+sin^(2)((7pi)/8) is:`

A

1

B

2

C

`3/8`

D

`1/8`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)pi/8+sin^(2)(3pi)/(8)+sin^(2)(5pi)/8+sin^(2)(7pi)/8=2

The value of sin^(4)(pi/8)+cos^(4)((3 pi)/8)+sin^(4)((5pi)/8)+cos^(4)((7pi)/8) is equal to =

sin^(2)(pi)/(4)+sin^(2)(3 pi)/(4)+sin^(2)(5 pi)/(4)+sin^(2)(7 pi)/(4)=2

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

Prove (i) "sin"^(2)(pi)/(8)+"sin"^(2)(3pi)/(8)+"sin"^(2)(5pi)/(8)+"sin"^(2)(7pi)/(8)=2 (ii) [1+cotalpha-sec((pi)/(2)+alpha)] [1+cotalpha+sec((pi)/(2)+alpha)]=2cotalpha

2sin((pi)/8)sin((2pi)/8)sin((3pi)/8)sin((5pi)/8)sin((6pi)/8)sin((7pi)/8) = ?

(cos^(2)pi)/(8)+(sin^(2)(3 pi))/(8)+(sin^(2)(5 pi))/(8_(sin)^(2))(7 pi)/(8)=2

Prove that: sin^(4)((pi)/(8))+sin^(4)((3 pi)/(8))+sin^(4)((5 pi)/(8))+sin^(4)((7 pi)/(8))=(3)/(2)

Prove that: cos^(2)pi/8 + cos^(2)(3pi)/(8) + cos^(2)(5pi)/(8)+ cos^(2)(7pi)/(8)=2