Home
Class 11
MATHS
1+ cos ^(2) 2A is equal to...

`1+ cos ^(2) 2A` is equal to

A

`sin ^(4) A+ cos ^(4) A`

B

`sin ^(2) 2A`

C

`2(cos ^(4) A + sin ^(4) A)`

D

`2 (cos ^(4) A- sin ^(4) A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(1 + \cos^2(2A)\), we can start by using some trigonometric identities. ### Step 1: Use the Pythagorean Identity We know from the Pythagorean identity that: \[ \sin^2(x) + \cos^2(x) = 1 \] This implies: \[ \sin^2(2A) = 1 - \cos^2(2A) \] ### Step 2: Substitute into the Expression We can rewrite the expression \(1 + \cos^2(2A)\) using the identity from Step 1: \[ 1 + \cos^2(2A) = 1 + (1 - \sin^2(2A)) = 2 - \sin^2(2A) \] ### Step 3: Express \(\sin^2(2A)\) in terms of \(\sin^2(A)\) and \(\cos^2(A)\) Using the double angle formula for sine: \[ \sin(2A) = 2\sin(A)\cos(A) \] Thus, \[ \sin^2(2A) = (2\sin(A)\cos(A))^2 = 4\sin^2(A)\cos^2(A) \] ### Step 4: Substitute \(\sin^2(2A)\) back into the expression Now we can substitute \(\sin^2(2A)\) into our expression: \[ 1 + \cos^2(2A) = 2 - 4\sin^2(A)\cos^2(A) \] ### Step 5: Simplify the Expression We can further simplify \(4\sin^2(A)\cos^2(A)\) using the identity: \[ \sin^2(A)\cos^2(A) = \frac{1}{4}\sin^2(2A) \] Thus, \[ 1 + \cos^2(2A) = 2 - \sin^2(2A) \] ### Conclusion The expression \(1 + \cos^2(2A)\) simplifies to: \[ 2 - \sin^2(2A) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

cos^(2) alpha +cos^(2) beta +cos^(2) gamma is equal to

cos 1^(@) + cos2^(@) + cos 3^(@) + ….+cos 180^(@) is equal to

the value of lim_(x rarr0)(x tan2x-2x tan x)/((1-cos2x)^(2)) is equal to

lim_(x rarr0)((x tan2x-2x tan x)/((1-cos2x)^(2))) is equal to

If cos A + cos^(2) A = 1 , then sin^(2) A + sin^(4) A is equal to

The value of cos (1/2 cos^(-1) . 1/8) is equal to