Home
Class 11
MATHS
(sec 2A+1 ) sec ^(2) A=...

`(sec 2A+1 ) sec ^(2) A=`

A

`sec A `

B

`2 sec A`

C

`sec 2A`

D

`2 sec 2A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sec 2A + 1) \sec^2 A\), we will follow these steps: ### Step 1: Rewrite in terms of sine and cosine We know that \(\sec \theta = \frac{1}{\cos \theta}\). Therefore, we can rewrite the expression as: \[ (\sec 2A + 1) \sec^2 A = \left(\frac{1}{\cos 2A} + 1\right) \cdot \frac{1}{\cos^2 A} \] ### Step 2: Combine the terms inside the parentheses Now we can combine the terms inside the parentheses: \[ \frac{1}{\cos 2A} + 1 = \frac{1 + \cos 2A}{\cos 2A} \] So, the expression becomes: \[ \frac{1 + \cos 2A}{\cos 2A} \cdot \frac{1}{\cos^2 A} \] ### Step 3: Simplify the expression Now we can simplify the expression: \[ \frac{1 + \cos 2A}{\cos 2A \cdot \cos^2 A} \] ### Step 4: Use the identity for \(1 + \cos 2A\) We can use the trigonometric identity \(1 + \cos 2A = 2 \cos^2 A\): \[ \frac{2 \cos^2 A}{\cos 2A \cdot \cos^2 A} \] ### Step 5: Cancel out \(\cos^2 A\) Now we can cancel \(\cos^2 A\) from the numerator and the denominator: \[ \frac{2}{\cos 2A} \] ### Step 6: Rewrite in terms of secant Finally, we can rewrite this in terms of secant: \[ 2 \sec 2A \] Thus, the final answer is: \[ 2 \sec 2A \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

" (1) sec^(2)A+cosec^(2)A=sec^(2)A*cosec^(2)A

sec^(-1)(-2)

(1)/(sec A)+(sec A)/(sec A)

(sec^2 theta-1)/(sec^2 theta)- sin^2 theta=

prove that : (tan 2^n theta)/(tan theta) = (1+sec 2theta) (1+ sec 2^2 theta) (1+sec 2^3 theta) … (1+ sec 2^n theta)

If (1+sec^(2)pi x). (1+sec^(2)y)= -x^(2)+2x+3 then

What is the value of /का मान क्या है? [(sec2 theta+1) sqrt(sec^2 theta-1)]xx1/2(cot theta- tan theta) ?

lim_ (n rarr oo) [(1) / (n ^ (2)) * sec ^ (2) ((1) / (n ^ (2))) + (2) / (n ^ (2)) * sec ^ (2) ((4) / (n ^ (2))) + ............ + (1) / (n) * sec ^ (2) 1]