Home
Class 11
MATHS
cosec A -2 cot 2A cos A=...

`cosec A -2 cot 2A cos A=`

A

`2 sin A `

B

`sec A `

C

`2 cos A cot A`

D

`cos A `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \csc A - 2 \cot 2A \cos A \), we will break it down step by step. ### Step 1: Rewrite the terms in terms of sine and cosine We know that: - \( \csc A = \frac{1}{\sin A} \) - \( \cot 2A = \frac{\cos 2A}{\sin 2A} \) Thus, we can rewrite the expression: \[ \csc A - 2 \cot 2A \cos A = \frac{1}{\sin A} - 2 \left( \frac{\cos 2A}{\sin 2A} \right) \cos A \] ### Step 2: Substitute the double angle identities Using the double angle formulas: - \( \cos 2A = 2 \cos^2 A - 1 \) - \( \sin 2A = 2 \sin A \cos A \) Substituting these into the expression gives: \[ \frac{1}{\sin A} - 2 \left( \frac{2 \cos^2 A - 1}{2 \sin A \cos A} \right) \cos A \] ### Step 3: Simplify the second term The second term simplifies as follows: \[ - 2 \left( \frac{2 \cos^2 A - 1}{2 \sin A \cos A} \right) \cos A = - \frac{(2 \cos^2 A - 1) \cos A}{\sin A} \] ### Step 4: Combine the terms Now we can combine the two terms: \[ \frac{1}{\sin A} - \frac{(2 \cos^2 A - 1) \cos A}{\sin A} = \frac{1 - (2 \cos^2 A - 1) \cos A}{\sin A} \] ### Step 5: Simplify the numerator The numerator simplifies to: \[ 1 - (2 \cos^2 A - 1) \cos A = 1 - 2 \cos^3 A + \cos A \] Thus, we have: \[ \frac{1 + \cos A - 2 \cos^3 A}{\sin A} \] ### Step 6: Final expression The final expression is: \[ \frac{1 + \cos A - 2 \cos^3 A}{\sin A} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

(cosec A - sin A)^2 + (sec A - cos A)^2 - (cot A - tan A)^2 is equal to

What is the simplified value of ("cosec"^4 A - cot^2 A )-(cot^4 A+ "cosec"^2A) ?

" cosec 2x + cot 2x = cot x "

Prove that (i) (tan A+ sin A)/(tan A- sin A)= (sec A+1)/(sec A-1) (ii) (cot A- cos A)/(cot A+ cos A)= ("cosec" A-1)/("cosec" A+1)

Prove that , (Cot A-cos A)/(cot A+cos A)=(cosec A-1)/(cosec A+1)

(cosec A)/(cot A+tan A)=cos A

Prove that (cosA-sinA+1)/(cosA+sinA-1) =cosec A+ cot A using the identity cosec^(2)A=1+cot^(2)A .

(cosec A. cosecB+cotA . cotB)^2-(cosec A. cotB + cosecB. cot A)^2 is

Prove that: (cos A - sin A + 1)/(cos A + sin A -1) = "cosec"A + cot A