Home
Class 11
MATHS
cos 20^(@) cos 40^(@) cos 80^(@)=...

`cos 20^(@) cos 40^(@) cos 80^(@)=`

A

`1/2`

B

`1/4`

C

`1/6`

D

`1/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos 20^\circ \cos 40^\circ \cos 80^\circ \), we can use a trigonometric identity that simplifies the product of cosines. ### Step-by-Step Solution: 1. **Identify the angles**: We have the angles \( 20^\circ \), \( 40^\circ \), and \( 80^\circ \). 2. **Use the identity**: We can use the identity: \[ \cos A \cos B \cos C = \frac{1}{4} \left( \cos(A + B + C) + \cos(A + B - C) + \cos(A - B + C) + \cos(-A + B + C) \right) \] However, a more straightforward approach is to recognize that: \[ \cos A \cos (60^\circ - A) \cos (60^\circ + A) = \frac{1}{4} \cos 3A \] 3. **Rewrite the angles**: Notice that: - \( 40^\circ = 60^\circ - 20^\circ \) - \( 80^\circ = 60^\circ + 20^\circ \) Thus, we can rewrite the expression as: \[ \cos 20^\circ \cos 40^\circ \cos 80^\circ = \cos 20^\circ \cos (60^\circ - 20^\circ) \cos (60^\circ + 20^\circ) \] 4. **Apply the identity**: Using the identity mentioned: \[ \cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{4} \cos (3 \times 20^\circ) \] 5. **Calculate \( \cos 60^\circ \)**: Now, we find: \[ \cos 60^\circ = \frac{1}{2} \] 6. **Final calculation**: Substitute back into the equation: \[ \cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} \] ### Conclusion: Thus, the value of \( \cos 20^\circ \cos 40^\circ \cos 80^\circ \) is \( \frac{1}{8} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

The value of cos 20^(@) cos 40^(@)cos 60^(@) cos 80^(@) is equal to

cos20 ^ (@) cos40 ^ (@) cos80 ^ (@) =

Prove that: cos20^(@)cos40^(@)cos80^(@)=1/8

Prove that: cos20^(@)cos40^(@)cos80^(@)=(1)/(8)

cos20 ^ (@) cos40 ^ (@) cos60 ^ (@) cos80 ^ (@) - (1) / (16) =

Prove that a) (sin3A + sinA)sinA+(cos3A-cosA) cosA=0 b) cos20^(@)cos40^(@)cos80^(@)=1/8 c) (sin8thetacostheta-sin6thetacos3theta)/(cos2thetacostheta-sin3thetasin4theta) = tan2theta

If x= cos 10^(@)cos 20^(@) cos 40^(@), then the value of x is

cos20^(@)+cos100^(@)+cos140^(@)=