Home
Class 11
MATHS
If tan A = 1/2, then tan 3A=...

If `tan A = 1/2, ` then `tan 3A=`

A

` 9/2`

B

`11/2`

C

`7/2`

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \tan 3A \) given that \( \tan A = \frac{1}{2} \), we will use the trigonometric identity for \( \tan 3A \): \[ \tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A} \] ### Step-by-Step Solution: **Step 1: Identify \( \tan A \)** Given \( \tan A = \frac{1}{2} \). **Step 2: Calculate \( \tan^2 A \)** \[ \tan^2 A = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] **Step 3: Calculate \( \tan^3 A \)** \[ \tan^3 A = \left(\frac{1}{2}\right)^3 = \frac{1}{8} \] **Step 4: Substitute values into the formula for \( \tan 3A \)** Now, we substitute \( \tan A \), \( \tan^2 A \), and \( \tan^3 A \) into the formula: \[ \tan 3A = \frac{3 \cdot \frac{1}{2} - \frac{1}{8}}{1 - 3 \cdot \frac{1}{4}} \] **Step 5: Simplify the numerator** Calculating the numerator: \[ 3 \cdot \frac{1}{2} = \frac{3}{2} \] So, \[ \frac{3}{2} - \frac{1}{8} = \frac{12}{8} - \frac{1}{8} = \frac{11}{8} \] **Step 6: Simplify the denominator** Calculating the denominator: \[ 1 - 3 \cdot \frac{1}{4} = 1 - \frac{3}{4} = \frac{1}{4} \] **Step 7: Combine the results** Now, substituting back into the formula: \[ \tan 3A = \frac{\frac{11}{8}}{\frac{1}{4}} = \frac{11}{8} \cdot 4 = \frac{11}{2} \] ### Final Answer: \[ \tan 3A = \frac{11}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If tan A=(1)/(2), then tan3A=

If tan A =1/2, tan B=1/3, then cos 2A=

If tan A=(1)/(2) and tan B=(1)/(3), then tan(2A+B) is

If tan A=1/2 and tan B=1/3 , then tan(A +B) is equal to

Find the value of tan 1^@ tan 2^@ tan 3^@ ….tan 45^@ …..tan 88^@ tan 89^@

tan ^ (- 1) 2 + tan ^ (- 1) 3 =?