Home
Class 11
MATHS
If x+1/x =2 cos theta, then (x^(3) + (1)...

If `x+1/x =2 cos theta, `then `(x^(3) + (1)/(x^(3)))`is equal to-

A

`cos 3 theta `

B

`2 cos 3 theta `

C

`1/2 cos 3 theta `

D

`1/3 cos 3 theta `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=2cos theta, then x^(3)+(1)/(x^(3)) is equal to

If x+(1)/(x)=2cos theta then x^(3)+(1)/(x^(3)) is

If (x^2+1)/(2x)=cos theta then (x^6+1)/(2x^3)=

If cos theta =1/2 (x+1/x ) , then 1/2(x^(2) +1/(x^(2))) is equal to :

If (x+1/x)=2 then (x^3+1/x^3) is equal to:

If x + 1/x= 2cos theta ,then find the value of x^3 + 1/x^3

If sin theta+cos theta=x, then (4-3(x^(2)-1)^(2))/(4)=