Home
Class 11
MATHS
If sin alpha = (-3)/(5), where pi lt al...

If `sin alpha = (-3)/(5), ` where `pi lt alpha lt (3pi)/(2), ` then ` cos ((alpha)/(2))=`

A

`(-1)/( sqrt10)`

B

`(1)/(sqrt10)`

C

`(3)/(sqrt10)`

D

`(-3)/(sqrt10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( \cos\left(\frac{\alpha}{2}\right) \) given that \( \sin \alpha = -\frac{3}{5} \) and \( \pi < \alpha < \frac{3\pi}{2} \). ### Step-by-step Solution: 1. **Identify the Quadrant**: Since \( \alpha \) is in the interval \( \left(\pi, \frac{3\pi}{2}\right) \), it lies in the third quadrant where sine is negative and cosine is also negative. 2. **Use the Pythagorean Identity**: We know that: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting the value of \( \sin \alpha \): \[ \left(-\frac{3}{5}\right)^2 + \cos^2 \alpha = 1 \] This simplifies to: \[ \frac{9}{25} + \cos^2 \alpha = 1 \] \[ \cos^2 \alpha = 1 - \frac{9}{25} = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} \] 3. **Find \( \cos \alpha \)**: Since \( \alpha \) is in the third quadrant, \( \cos \alpha \) will be negative: \[ \cos \alpha = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \] 4. **Use the Half-Angle Formula**: The half-angle formula for cosine is given by: \[ \cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 + \cos \alpha}{2}} \] Substituting \( \cos \alpha \): \[ \cos\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \frac{4}{5}}{2}} = \pm \sqrt{\frac{\frac{1}{5}}{2}} = \pm \sqrt{\frac{1}{10}} = \pm \frac{1}{\sqrt{10}} \] 5. **Determine the Sign of \( \cos\left(\frac{\alpha}{2}\right) \)**: Since \( \alpha \) is in the third quadrant, \( \frac{\alpha}{2} \) will be in the second quadrant (as \( \frac{\pi}{2} < \frac{\alpha}{2} < \frac{3\pi}{4} \)), where cosine is negative. Therefore: \[ \cos\left(\frac{\alpha}{2}\right) = -\frac{1}{\sqrt{10}} \] ### Final Answer: \[ \cos\left(\frac{\alpha}{2}\right) = -\frac{1}{\sqrt{10}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If sin alpha = -3/5 , pi lt alpha lt 3pi/2 then cos alpha/2 = 1/sqrt10

If z=1+i tan alpha where pi lt alpha lt(3pi)/(2), then what is |z| equal to ?

If cot alpha=(1)/(2) , sec beta=(-5)/(3) where pi lt alpha lt (3pi)/2 and (pi)/(2) lt beta lt pi Find the value of tan(alpha +beta)

If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

If sin alpha +cos alpha =(sqrt(3)+1)/(2), 0 lt alpha lt 2pi , then possible values "tan"(alpha)/(2) can take is/are :

If sin alpha=-(3)/(5),alpha in[0,2 pi] then the possible values of cos((alpha)/(2)) is

If 13 sin alpha = 12, where pi//2 lt alpha lt pi, and 3 sec beta = 5, where 3pi//2 lt beta lt 2pi , evaluate : 5tan alpha+3 tan^(2)beta.