Home
Class 11
MATHS
If tan ""A/2 =3/2, then (1+ cos A)/(1- ...

If `tan ""A/2 =3/2, ` then `(1+ cos A)/(1- cos A)=`

A

`-5`

B

5

C

`9/4`

D

`4/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{1 + \cos A}{1 - \cos A}\) given that \(\tan \frac{A}{2} = \frac{3}{2}\). ### Step 1: Use the half-angle identity for cosine We can use the identity for \(\cos A\) in terms of \(\tan \frac{A}{2}\): \[ \cos A = \frac{1 - \tan^2 \frac{A}{2}}{1 + \tan^2 \frac{A}{2}} \] ### Step 2: Substitute the value of \(\tan \frac{A}{2}\) Given that \(\tan \frac{A}{2} = \frac{3}{2}\), we can substitute this into the formula: \[ \cos A = \frac{1 - \left(\frac{3}{2}\right)^2}{1 + \left(\frac{3}{2}\right)^2} \] ### Step 3: Calculate \(\tan^2 \frac{A}{2}\) Calculate \(\tan^2 \frac{A}{2}\): \[ \tan^2 \frac{A}{2} = \left(\frac{3}{2}\right)^2 = \frac{9}{4} \] ### Step 4: Substitute \(\tan^2 \frac{A}{2}\) into the cosine formula Now substitute \(\tan^2 \frac{A}{2}\) into the expression for \(\cos A\): \[ \cos A = \frac{1 - \frac{9}{4}}{1 + \frac{9}{4}} = \frac{\frac{4}{4} - \frac{9}{4}}{\frac{4}{4} + \frac{9}{4}} = \frac{-\frac{5}{4}}{\frac{13}{4}} = -\frac{5}{13} \] ### Step 5: Substitute \(\cos A\) into \(\frac{1 + \cos A}{1 - \cos A}\) Now we can substitute \(\cos A\) into the expression \(\frac{1 + \cos A}{1 - \cos A}\): \[ \frac{1 + \cos A}{1 - \cos A} = \frac{1 - \frac{5}{13}}{1 + \frac{5}{13}} = \frac{\frac{13}{13} - \frac{5}{13}}{\frac{13}{13} + \frac{5}{13}} = \frac{\frac{8}{13}}{\frac{18}{13}} = \frac{8}{18} = \frac{4}{9} \] ### Final Answer Thus, the value of \(\frac{1 + \cos A}{1 - \cos A}\) is \(\frac{4}{9}\). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If tan A =1/2, tan B=1/3, then cos 2A=

tan(A/2)=(sqrt((1-cos A)/(1+cos A)))

prove that (1-cos2A)/(1+cos2A)=tan^(2)A

(1 + tan A) / (1-tan A) = (cos2A) / (1-sin2A)

tan A=(1)/(2),tan B=(1)/(3), then cos2A is

2cos^(2)B-1=tan^(2)A, then cos A cos B=

If tan theta = (3)/(4) , find the value of ((1 - cos^(2) theta)/(1 + cos^(2) theta))

2cos^(2)B-1=tan^(2)A, then cos A cos B

2tan A tan B = 1rArr (cos (AB)) / (cos (A + B))

(tan ^ (3) A) / (1 + tan ^ (2) A) + (cot ^ (3) A) / (1 + cot ^ (2) A) = sec A cos ecA-2sin A cos A