Home
Class 11
MATHS
tan ""A/2 is equal to...

`tan ""A/2` is equal to

A

`sqrt((1- sin A)/( 1+ sin A))`

B

`sqrt((1+ sin A)/(1- sin A))`

C

`sqrt((1 -cos A)/(1 + cos A))`

D

`sqrt((1 +cos A)/(1- cos A))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan \frac{A}{2} \), we can use the half-angle identity for tangent. The half-angle formula for tangent is given by: \[ \tan \frac{A}{2} = \frac{1 - \cos A}{\sin A} \] or \[ \tan \frac{A}{2} = \frac{\sin A}{1 + \cos A} \] We can derive this step by step: ### Step 1: Use the Half-Angle Identity We will use the half-angle identity for tangent: \[ \tan \frac{A}{2} = \frac{\sin A}{1 + \cos A} \] ### Step 2: Substitute Known Values If we know the values of \( \sin A \) and \( \cos A \), we can substitute them into the formula. For example, if \( \sin A = \frac{3}{5} \) and \( \cos A = \frac{4}{5} \), we substitute these values into the formula. ### Step 3: Calculate Using the values: \[ \tan \frac{A}{2} = \frac{\frac{3}{5}}{1 + \frac{4}{5}} = \frac{\frac{3}{5}}{\frac{9}{5}} = \frac{3}{9} = \frac{1}{3} \] ### Final Answer Thus, \( \tan \frac{A}{2} = \frac{1}{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

In any Delta ABC the value of 1-tan""B/2 tan""C/2 is equal to :-

If cosx-sinalphacotbetasinx=cosalpha,then tan""(x)/(2) is equal to

In any DeltaABC,("tan"(A)/(2)-"tan"(B)/(2))/("tan"(A)/(2)+"tan"(B)/(2)) is equal to

IF alpha , beta are eccentric angles of end points of a focal chord of the ellipse x^(2)/a^(2) + y^(2)/b^(2) =1 then tan(alpha /2) tan (beta/2) is equal to

If (a sec alpha,b tan alpha) and (a sec beta ,b tan beta) be the ends of a chord of (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 passing through the focus (ae,0) then tan (alpha/2) tan (beta/2) is equal to

In a triangleABC , [tan(A/2) tan(C/2)] is equal to