Home
Class 11
MATHS
If sin x+ cos x =1/5 and 0 le x le pi, t...

If `sin x+ cos x =1/5` and `0 le x le pi,` then ` tan x ` is equal to

A

`-4/3`

B

`-3/4`

C

`-2/3`

D

`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: **Given:** \[ \sin x + \cos x = \frac{1}{5} \] **Step 1: Square both sides.** Squaring both sides gives us: \[ (\sin x + \cos x)^2 = \left(\frac{1}{5}\right)^2 \] This expands to: \[ \sin^2 x + 2\sin x \cos x + \cos^2 x = \frac{1}{25} \] **Step 2: Use the Pythagorean identity.** From the Pythagorean identity, we know that: \[ \sin^2 x + \cos^2 x = 1 \] Substituting this into our equation, we get: \[ 1 + 2\sin x \cos x = \frac{1}{25} \] **Step 3: Rearrange the equation.** Rearranging gives us: \[ 2\sin x \cos x = \frac{1}{25} - 1 \] Calculating the right-hand side: \[ \frac{1}{25} - 1 = \frac{1 - 25}{25} = \frac{-24}{25} \] So we have: \[ 2\sin x \cos x = \frac{-24}{25} \] **Step 4: Use the double angle identity.** Using the double angle identity for sine, we know: \[ \sin 2x = 2\sin x \cos x \] Thus, we can write: \[ \sin 2x = \frac{-24}{25} \] **Step 5: Solve for \( \tan x \).** We know that: \[ \sin 2x = \frac{2\tan x}{1 + \tan^2 x} \] Setting this equal to our previous result: \[ \frac{2\tan x}{1 + \tan^2 x} = \frac{-24}{25} \] **Step 6: Cross-multiply to eliminate the fraction.** Cross-multiplying gives: \[ 2\tan x \cdot 25 = -24(1 + \tan^2 x) \] This simplifies to: \[ 50\tan x = -24 - 24\tan^2 x \] **Step 7: Rearrange into standard quadratic form.** Rearranging gives us: \[ 24\tan^2 x + 50\tan x + 24 = 0 \] **Step 8: Use the quadratic formula.** To solve for \( \tan x \), we can use the quadratic formula: \[ \tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 24 \), \( b = 50 \), and \( c = 24 \): \[ \tan x = \frac{-50 \pm \sqrt{50^2 - 4 \cdot 24 \cdot 24}}{2 \cdot 24} \] Calculating the discriminant: \[ 50^2 = 2500 \] \[ 4 \cdot 24 \cdot 24 = 2304 \] Thus: \[ b^2 - 4ac = 2500 - 2304 = 196 \] Taking the square root: \[ \sqrt{196} = 14 \] Now substituting back into the quadratic formula: \[ \tan x = \frac{-50 \pm 14}{48} \] **Step 9: Calculate the two possible values for \( \tan x \).** Calculating the two values: 1. \( \tan x = \frac{-50 + 14}{48} = \frac{-36}{48} = -\frac{3}{4} \) 2. \( \tan x = \frac{-50 - 14}{48} = \frac{-64}{48} = -\frac{4}{3} \) **Step 10: Determine the valid solution.** Since \( 0 \leq x \leq \pi \), we need to find the valid solution for \( \tan x \). The valid solution in this range is: \[ \tan x = -\frac{4}{3} \] Thus, the final answer is: \[ \tan x = -\frac{4}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

Let 4sin^(2)x - 3 , where 0 le x le pi . What is tan 3x is equal to?

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

The function f(x)=cos x, 0 le x le pi is

If 4 sin^(2) x-8sin x+ 3 le 0,0le x le 2pi then the solution set for x is

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -CRITICAL THINKING
  1. tanalpha=1/7,tanbeta=1/3,t h e ncos2alpha=

    Text Solution

    |

  2. If costheta=1/2(x+1/x) then 1/2(x^2+1/x^2)=

    Text Solution

    |

  3. If sin x+ cos x =1/5 and 0 le x le pi, then tan x is equal to

    Text Solution

    |

  4. If 0 lt x lt pi and cos x + sin x = 1/2, then tan x is

    Text Solution

    |

  5. If : tan((pi)/(4)+theta) - tan((pi)/(4) - theta) =m*tan (ntheta),"then...

    Text Solution

    |

  6. If sec 2 theta =p + tan 2 theta, then the value of sin^(2) theta in ...

    Text Solution

    |

  7. If theta and phi are angles in first quadrant and tantheta=1/7 and sin...

    Text Solution

    |

  8. If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^...

    Text Solution

    |

  9. If tan^2theta=2tan^2varphi+1,t h e ncos2theta+sin^2varphi equals -1 (...

    Text Solution

    |

  10. If tantheta-cottheta=aandsintheta+costheta=b(b^2-1)^2(a^2+4) is equal...

    Text Solution

    |

  11. If sin A sin 2A = x and cos A + cos 2A = y, then (x^(2)+y^(2)) (x^(2)+...

    Text Solution

    |

  12. If tan x= (2b)/(a-c), a!=c, y = a cos^2 x +2b sin x*cos x + c sin^2x, ...

    Text Solution

    |

  13. 8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

    Text Solution

    |

  14. If x= cos 10^(@)cos 20^(@) cos 40^(@), then the value of x is

    Text Solution

    |

  15. If theta =(pi)/(2 ^(n) +1), then cos theta cos 2 theta cos 2^(2) the...

    Text Solution

    |

  16. cos(pi/7)cos((2pi)/7)cos((4pi)/7)=

    Text Solution

    |

  17. The value of co s pi/5 co s.2pi / 5 c o s 4pi / 5 co s 8pi / 5 =

    Text Solution

    |

  18. The value of (1)/(sin 10^(@)) -(sqrt3)/(cos 10^(@)) is equal to

    Text Solution

    |

  19. If |tanA|lt1and |A|is acute, then (sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt...

    Text Solution

    |

  20. If tanx=b/a then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))=

    Text Solution

    |