Home
Class 11
MATHS
The value of (1)/(sin 10^(@)) -(sqrt3)/(...

The value of `(1)/(sin 10^(@)) -(sqrt3)/(cos 10^(@))` is equal to

A

1

B

2

C

4

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} \), we can follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \( \sin 10^\circ \cos 10^\circ \). ### Step 2: Rewrite the expression Rewriting the expression with the common denominator gives: \[ \frac{\cos 10^\circ}{\sin 10^\circ \cos 10^\circ} - \frac{\sqrt{3} \sin 10^\circ}{\sin 10^\circ \cos 10^\circ} \] ### Step 3: Combine the fractions Now we can combine the fractions: \[ \frac{\cos 10^\circ - \sqrt{3} \sin 10^\circ}{\sin 10^\circ \cos 10^\circ} \] ### Step 4: Simplify the numerator The numerator is \( \cos 10^\circ - \sqrt{3} \sin 10^\circ \). ### Step 5: Recognize the form of the numerator We can express the numerator in terms of sine and cosine of a compound angle. We know that: \[ \cos A - \sin A = \sqrt{2} \cos(A + 45^\circ) \] However, in this case, we can rewrite it directly as: \[ \cos 10^\circ - \sin 10^\circ \cdot \sqrt{3} = 2 \left( \frac{1}{2} \cos 10^\circ - \frac{\sqrt{3}}{2} \sin 10^\circ \right) \] This can be recognized as: \[ 2 \left( \cos 30^\circ \cos 10^\circ - \sin 30^\circ \sin 10^\circ \right) = 2 \cos(30^\circ + 10^\circ) = 2 \cos 40^\circ \] ### Step 6: Substitute back into the expression Now substituting this back into our expression gives: \[ \frac{2 \cos 40^\circ}{\sin 10^\circ \cos 10^\circ} \] ### Step 7: Use the double angle identity We know that \( \sin 2\theta = 2 \sin \theta \cos \theta \), so: \[ \sin 20^\circ = 2 \sin 10^\circ \cos 10^\circ \] Thus, we can rewrite our expression as: \[ \frac{2 \cos 40^\circ}{\frac{1}{2} \sin 20^\circ} = \frac{4 \cos 40^\circ}{\sin 20^\circ} \] ### Step 8: Final simplification Using the identity \( \sin(90^\circ - x) = \cos x \): \[ \sin 20^\circ = \cos 70^\circ \] Thus, the expression simplifies to: \[ 4 \cdot \frac{\cos 40^\circ}{\sin 20^\circ} = 4 \] ### Final Answer The value of \( \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

(1)/(sin10^(@))-(sqrt(3))/(cos10^(@))=

(1)/(2sin10^(@))-(sqrt(3))/(2cos10^(@))

The value of ((sqrt(3))/(sin15^(@)))-((1)/(cos15^(@))) is equal to

Show that (1)/(sin10^(@))-(sqrt(3))/(cos10^(@))=4

The value of (1)/(cos290^(@))+(1)/(sqrt3sin250^(@)) is equal to

The value of cos10^(@)-sin 10^(@) is

The value of cos10^(@)-sin10^(@) is

The value of cos10^(@)-sin10^(@) is

The value of expression E=(1)/(sin10^(@)-)(sqrt(3))/(cos10^(@)=)

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -CRITICAL THINKING
  1. cos(pi/7)cos((2pi)/7)cos((4pi)/7)=

    Text Solution

    |

  2. The value of co s pi/5 co s.2pi / 5 c o s 4pi / 5 co s 8pi / 5 =

    Text Solution

    |

  3. The value of (1)/(sin 10^(@)) -(sqrt3)/(cos 10^(@)) is equal to

    Text Solution

    |

  4. If |tanA|lt1and |A|is acute, then (sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt...

    Text Solution

    |

  5. If tanx=b/a then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))=

    Text Solution

    |

  6. Show that: t a n(60^0+theta)t a n(60^0-theta)=(2cos2theta+1)/(2cos2the...

    Text Solution

    |

  7. Maximum value of sin^4 theta + cos^4 theta is

    Text Solution

    |

  8. Let B =2 sin ^(2) x - cos 2x, then

    Text Solution

    |

  9. If 3 sin 2 theta = 2 sin 3 theta and 0 lt theta lt pi, then sin theta ...

    Text Solution

    |

  10. If sin 2A =sin 3A and 0 le A le 90^(@), then A is equal to

    Text Solution

    |

  11. Solve that following equations : "tantheta"+"tan"(theta+pi/3)+"tan"(t...

    Text Solution

    |

  12. If sin theta =-4/5 and theta lies in third quadrant, then the valu...

    Text Solution

    |

  13. If sec theta =1 (1)/(4), then tan ""(theta)/(2)=

    Text Solution

    |

  14. For for A=133^(@),2cos""A/2is equal to

    Text Solution

    |

  15. If cos theta = 3/5 and cos phi =4/5, where theta and phi are positive ...

    Text Solution

    |

  16. (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=

    Text Solution

    |

  17. (sin 2A)/( 1+ cos 2A) . (cos A)/( 1+ cos A)=

    Text Solution

    |

  18. (1+ sin A- cos A)/( 1+ sin A + cos A)=

    Text Solution

    |

  19. (tanA+secA-1)/(tanA-secA+1)=(1+sinA)/(cosA)

    Text Solution

    |

  20. If 0 lt theta lt (pi)/(2) and (y+1)/(1-y) =sqrt((1+ sin theta)/( 1- si...

    Text Solution

    |