Home
Class 11
MATHS
(1+ sin A- cos A)/( 1+ sin A + cos A)=...

`(1+ sin A- cos A)/( 1+ sin A + cos A)=`

A

`sin ""A/2`

B

`cos ""A/2`

C

`tan ""A/2`

D

`cot ""A/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1 + \sin A - \cos A}{1 + \sin A + \cos A}\), we can simplify it step by step. ### Step 1: Rewrite the Expression We start with the given expression: \[ \frac{1 + \sin A - \cos A}{1 + \sin A + \cos A} \] ### Step 2: Use Trigonometric Identities We can use the identities for \(1 - \cos A\) and \(1 + \cos A\): - \(1 - \cos A = 2 \sin^2\left(\frac{A}{2}\right)\) - \(1 + \cos A = 2 \cos^2\left(\frac{A}{2}\right)\) ### Step 3: Rewrite the Numerator and Denominator Using the identities: - The numerator becomes: \[ 1 + \sin A - \cos A = 1 + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) - 2 \cos^2\left(\frac{A}{2}\right) \] - The denominator becomes: \[ 1 + \sin A + \cos A = 1 + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) + 2 \cos^2\left(\frac{A}{2}\right) \] ### Step 4: Simplify the Expression Now, we can simplify both the numerator and the denominator: - The numerator simplifies to: \[ 1 + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) - 2 \cos^2\left(\frac{A}{2}\right) = (1 - 2 \cos^2\left(\frac{A}{2}\right)) + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) \] - The denominator simplifies to: \[ 1 + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) + 2 \cos^2\left(\frac{A}{2}\right) = (1 + 2 \cos^2\left(\frac{A}{2}\right)) + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) \] ### Step 5: Factor Out Common Terms Now we can factor out common terms from the numerator and denominator: \[ \frac{(1 - 2 \cos^2\left(\frac{A}{2}\right)) + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right)}{(1 + 2 \cos^2\left(\frac{A}{2}\right)) + 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right)} \] ### Step 6: Final Simplification After canceling out common terms, we can simplify the expression to: \[ \frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} = \tan\left(\frac{A}{2}\right) \] ### Conclusion Thus, the final simplified expression is: \[ \frac{1 + \sin A - \cos A}{1 + \sin A + \cos A} = \tan\left(\frac{A}{2}\right) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

Prove that (1 + sin x-cos x) / (1 + sin x + cos x) + (1 + sin x + cos x) / (1 + sin x-cos x) = 2cos ecx

Prove that (sin A + 1-cos A) / (sin A-1 + cos A) = (1 + sin A) / (cos A)

Prove that (sin A + 1-cos A) / (sin A-1 + cos A) = (1 + sin A) / (cos A)

(1 + sin x-cos x) / (1 + sin x + cos x) = tan ((x) / (2))

(1 + sin2A-cos2A) / (1 + sin2A + cos2A) = tan A

If f(x) = (1+sin x - cos x)/(1- sin x - cos x ) , x != 0 is continuous at x = 0 , then : f(0) =

lim_ (x rarr0) (1 + sin x-cos x) / (1-sin x-cos x)

(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)

(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)

(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -CRITICAL THINKING
  1. The value of co s pi/5 co s.2pi / 5 c o s 4pi / 5 co s 8pi / 5 =

    Text Solution

    |

  2. The value of (1)/(sin 10^(@)) -(sqrt3)/(cos 10^(@)) is equal to

    Text Solution

    |

  3. If |tanA|lt1and |A|is acute, then (sqrt(1+sin2A)+sqrt(1-sin2A))/(sqrt...

    Text Solution

    |

  4. If tanx=b/a then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b))=

    Text Solution

    |

  5. Show that: t a n(60^0+theta)t a n(60^0-theta)=(2cos2theta+1)/(2cos2the...

    Text Solution

    |

  6. Maximum value of sin^4 theta + cos^4 theta is

    Text Solution

    |

  7. Let B =2 sin ^(2) x - cos 2x, then

    Text Solution

    |

  8. If 3 sin 2 theta = 2 sin 3 theta and 0 lt theta lt pi, then sin theta ...

    Text Solution

    |

  9. If sin 2A =sin 3A and 0 le A le 90^(@), then A is equal to

    Text Solution

    |

  10. Solve that following equations : "tantheta"+"tan"(theta+pi/3)+"tan"(t...

    Text Solution

    |

  11. If sin theta =-4/5 and theta lies in third quadrant, then the valu...

    Text Solution

    |

  12. If sec theta =1 (1)/(4), then tan ""(theta)/(2)=

    Text Solution

    |

  13. For for A=133^(@),2cos""A/2is equal to

    Text Solution

    |

  14. If cos theta = 3/5 and cos phi =4/5, where theta and phi are positive ...

    Text Solution

    |

  15. (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=

    Text Solution

    |

  16. (sin 2A)/( 1+ cos 2A) . (cos A)/( 1+ cos A)=

    Text Solution

    |

  17. (1+ sin A- cos A)/( 1+ sin A + cos A)=

    Text Solution

    |

  18. (tanA+secA-1)/(tanA-secA+1)=(1+sinA)/(cosA)

    Text Solution

    |

  19. If 0 lt theta lt (pi)/(2) and (y+1)/(1-y) =sqrt((1+ sin theta)/( 1- si...

    Text Solution

    |

  20. If tan A & tan B are the roots of the quadratic equation x^2 - ax +...

    Text Solution

    |