Home
Class 11
MATHS
(cos 17^(@) + sin 17^(@))/(cos 17^(@) - ...

`(cos 17^(@) + sin 17^(@))/(cos 17^(@) - sin 17^(@))=`

A

`tan 62^(@)`

B

`tan 56^(@)`

C

`tan 54^(@)`

D

`tan73^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cos 17^\circ + \sin 17^\circ)/(\cos 17^\circ - \sin 17^\circ)\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \frac{\cos 17^\circ + \sin 17^\circ}{\cos 17^\circ - \sin 17^\circ} \] ### Step 2: Multiply numerator and denominator by \(\sqrt{2}\) To simplify the expression, we can multiply both the numerator and the denominator by \(\sqrt{2}\): \[ \frac{\sqrt{2}(\cos 17^\circ + \sin 17^\circ)}{\sqrt{2}(\cos 17^\circ - \sin 17^\circ)} \] ### Step 3: Use the angle addition formulas Using the angle addition formulas, we know: \[ \sqrt{2}(\cos 17^\circ + \sin 17^\circ) = \sqrt{2} \cdot \cos 17^\circ + \sqrt{2} \cdot \sin 17^\circ = \sqrt{2} \cdot \sin(17^\circ + 45^\circ) = \sqrt{2} \cdot \sin 62^\circ \] and \[ \sqrt{2}(\cos 17^\circ - \sin 17^\circ) = \sqrt{2} \cdot \cos 17^\circ - \sqrt{2} \cdot \sin 17^\circ = \sqrt{2} \cdot \cos(17^\circ + 45^\circ) = \sqrt{2} \cdot \cos 62^\circ \] ### Step 4: Substitute back into the expression Now we substitute these results back into our expression: \[ \frac{\sqrt{2} \cdot \sin 62^\circ}{\sqrt{2} \cdot \cos 62^\circ} \] ### Step 5: Simplify the expression The \(\sqrt{2}\) cancels out: \[ \frac{\sin 62^\circ}{\cos 62^\circ} = \tan 62^\circ \] ### Final Answer Thus, the final result is: \[ \tan 62^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

(cos17^(@)+sin17^(@))/(cos17^(@)-sin17^(@))=?

(sin19^(@))/(cos71^(@))+(cos73^(@))/(sin17^(@))

" The value of ((sin17^(@))(cos13^(@))+(cos17^(@))(sin13^(@)))/((cos23^(@))(cos37^(@))-(sin157^(@))(sin37^(@))) is equal to

((sin49^(@))/(cos41^(@))-(cos17^(@))/(sin73^(@)))=?

sin47^(@)+cos77^(@)=cos17^(@)

(sin ^ (2) 63 ^ (@) + sin ^ (2) 27 ^ (@)) / (cos ^ (2) 17 ^ (@) + cos ^ (2) 73 ^ (@))

(a) Prove that sin65^(@)+cos65^(@)=sqrt(2)cos 20^(@) (b) Prove that sin47^(@)+cos77^(@)=cos17^(@)

What is the value of (sin 19^@)/(cos 71^@) + (cos 73^@)/(sin 17^@) ?

If cos 17^(@) + sin 17^(@) = alpha , then cos 34^(@) is equal to