Home
Class 11
MATHS
If a tan theta = b, then a cos 2 theta+ ...

If `a tan theta = b,` then `a cos 2 theta+ b sin 2 theta =`

A

a

B

b

C

`-a`

D

`-b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Given:** \[ a \tan \theta = b \] We need to find the value of: \[ a \cos 2\theta + b \sin 2\theta \] ### Step 1: Express \(\tan \theta\) in terms of \(a\) and \(b\) From the given equation, we can express \(\tan \theta\) as: \[ \tan \theta = \frac{b}{a} \] ### Step 2: Use the double angle formulas We will use the double angle formulas for cosine and sine: \[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \] \[ \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} \] ### Step 3: Substitute \(\tan \theta\) into the formulas Substituting \(\tan \theta = \frac{b}{a}\) into the formulas: 1. For \(\cos 2\theta\): \[ \cos 2\theta = \frac{1 - \left(\frac{b}{a}\right)^2}{1 + \left(\frac{b}{a}\right)^2} = \frac{1 - \frac{b^2}{a^2}}{1 + \frac{b^2}{a^2}} = \frac{a^2 - b^2}{a^2 + b^2} \] 2. For \(\sin 2\theta\): \[ \sin 2\theta = \frac{2 \left(\frac{b}{a}\right)}{1 + \left(\frac{b}{a}\right)^2} = \frac{\frac{2b}{a}}{1 + \frac{b^2}{a^2}} = \frac{2b}{a + \frac{b^2}{a}} = \frac{2b}{\frac{a^2 + b^2}{a}} = \frac{2ab}{a^2 + b^2} \] ### Step 4: Substitute \(\cos 2\theta\) and \(\sin 2\theta\) into the expression Now substitute these results into the expression \(a \cos 2\theta + b \sin 2\theta\): \[ a \cos 2\theta + b \sin 2\theta = a \left(\frac{a^2 - b^2}{a^2 + b^2}\right) + b \left(\frac{2ab}{a^2 + b^2}\right) \] ### Step 5: Simplify the expression Combine the terms: \[ = \frac{a(a^2 - b^2) + 2ab^2}{a^2 + b^2} \] \[ = \frac{a^3 - ab^2 + 2ab^2}{a^2 + b^2} \] \[ = \frac{a^3 + ab^2}{a^2 + b^2} \] ### Step 6: Factor out common terms Factor out \(a\) from the numerator: \[ = \frac{a(a^2 + b^2)}{a^2 + b^2} \] ### Step 7: Cancel out the common terms Since \(a^2 + b^2\) is in both the numerator and denominator (assuming \(a^2 + b^2 \neq 0\)): \[ = a \] ### Final Answer: Thus, the final result is: \[ a \cos 2\theta + b \sin 2\theta = a \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If tan theta = (b)/( a) , then a cos 2 theta + b sin 2 theta =a

If tan theta=b, then cos2 theta+b sin2 theta=

Knowledge Check

  • If tan theta = b//a , then b cos 2 theta + a sin 2 theta =

    A
    a
    B
    b
    C
    `b//a`
    D
    none
  • If A = tan theta + sin theta and B = tan theta - sin theta , then A^2 - B^2 is equal to

    A
    `4 sqrt( AB)`
    B
    `sqrt(AB)`
    C
    `2 sqrt(AB)`
    D
    `2 AB`
  • Similar Questions

    Explore conceptually related problems

    If tan theta=(a)/(b) then b cos2 theta+a sin2 theta=

    If tan theta = a/b, then find sin 2 theta, cos 2 theta, "and" tan 2 theta.

    If tan theta=(a)/(b), then b cos2 theta+a sin2 theta is equal to (a)a(b)b(c)(a)/(b)(d)(b)/(a)

    If b tan theta = a find the value of (cos theta + sin theta )/( cos theta - sin theta)

    if tan theta=(a)/(b), then cos2 theta+a sin2 theta equal to

    If x=a sin theta+b cos theta and y=a cos theta -b sin theta, " prove that " x^(2)+y^(2)=a^(2)+b^(2).