Home
Class 11
MATHS
If alpha, beta are solutin of 6 cos the...

If `alpha, beta ` are solutin of `6 cos theta + 8 sin theta=9,` then `sin (alpha + beta)=`

A

`3/5`

B

`4/5`

C

`24/25`

D

`12/13`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin(\alpha + \beta) \) given that \( \alpha \) and \( \beta \) are solutions to the equation \( 6 \cos \theta + 8 \sin \theta = 9 \). ### Step-by-Step Solution: 1. **Rewrite the equation**: \[ 6 \cos \theta + 8 \sin \theta = 9 \] We can divide the entire equation by 10 to simplify it: \[ \frac{6}{10} \cos \theta + \frac{8}{10} \sin \theta = \frac{9}{10} \] This simplifies to: \[ 0.6 \cos \theta + 0.8 \sin \theta = 0.9 \] 2. **Identify sine and cosine values**: We can express \( 0.6 \) and \( 0.8 \) in terms of sine and cosine of an angle \( m \): \[ \sin m = \frac{3}{5}, \quad \cos m = \frac{4}{5} \] This is because \( \sin^2 m + \cos^2 m = 1 \) holds true: \[ \left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 = \frac{9}{25} + \frac{16}{25} = 1 \] 3. **Substitute into the equation**: Now we can rewrite the equation using the sine and cosine values: \[ \frac{3}{5} \cos \theta + \frac{4}{5} \sin \theta = \frac{9}{10} \] This can be rewritten as: \[ \sin m \cos \theta + \cos m \sin \theta = \frac{9}{10} \] This is of the form \( \sin(m + \theta) = \frac{9}{10} \). 4. **Find \( \alpha + \beta \)**: Since \( \alpha \) and \( \beta \) are the solutions, we have: \[ \sin(m + \alpha) = \sin(m + \beta) = \frac{9}{10} \] From the sine function, we know: \[ m + \alpha = n\pi + (-1)^k (m + \beta) \] This gives us two cases: - \( m + \alpha = m + \beta \) (which is trivial) - \( m + \alpha = \pi - (m + \beta) \) 5. **Solving for \( \alpha + \beta \)**: From the second case, we can rearrange: \[ \alpha + \beta = \pi - 2m \] 6. **Calculate \( \sin(\alpha + \beta) \)**: Now we need to find: \[ \sin(\alpha + \beta) = \sin(\pi - 2m) \] Using the sine identity \( \sin(\pi - x) = \sin x \): \[ \sin(\alpha + \beta) = \sin(2m) \] 7. **Use the double angle formula**: We can use the double angle formula: \[ \sin(2m) = 2 \sin m \cos m \] Substituting the values of \( \sin m \) and \( \cos m \): \[ \sin(2m) = 2 \left(\frac{3}{5}\right) \left(\frac{4}{5}\right) = 2 \cdot \frac{12}{25} = \frac{24}{25} \] ### Final Answer: Thus, the value of \( \sin(\alpha + \beta) \) is: \[ \sin(\alpha + \beta) = \frac{24}{25} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha,beta are roots of a cos theta+b sin theta=c then value of sin alpha+sin beta&sin alpha sin beta is

If alpha and beta are distict roots of a cos theta+b sin theta=c, prove that sin(alpha+beta)=(2ab)/(a^(2)+b^(2))

alpha& beta are solutions of a cos theta+b sin theta=c(cos alpha!=cos beta)&(sin alpha!=sin beta) Then tan((alpha+beta)/(2))=?

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. If a tan theta = b, then a cos 2 theta+ b sin 2 theta =

    Text Solution

    |

  2. If a cos 2 theta + b sin 2 theta =c has alpha and beta as its solut...

    Text Solution

    |

  3. If alpha, beta are solutin of 6 cos theta + 8 sin theta=9, then sin (...

    Text Solution

    |

  4. If alpha is a root of 25cos^2theta+5costheta-12=0,pi/2ltalphaltpi the ...

    Text Solution

    |

  5. 2 cos ^(2) theta - 2 sin ^(2) theta =1, then theta =

    Text Solution

    |

  6. 2 sin A cos ^(3) A-2 sin ^(3) A cos A=

    Text Solution

    |

  7. sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=

    Text Solution

    |

  8. 3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x...

    Text Solution

    |

  9. If sin 2 theta + sin 2 phi =1/2 and cos 2 theta + cos 2 phi =3/2, then...

    Text Solution

    |

  10. If n=1,2,3,......., then cosalphacos2alphacos4alpha.......cos2^(n-1)a...

    Text Solution

    |

  11. cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

    Text Solution

    |

  12. If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical va...

    Text Solution

    |

  13. The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)...

    Text Solution

    |

  14. The value of sin ""31/3pi is

    Text Solution

    |

  15. Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

    Text Solution

    |

  16. The valur of (cot x- tan x)/(cot 2x) is

    Text Solution

    |

  17. (sec 8 A-1)/( sec 4A-1)=

    Text Solution

    |

  18. If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to

    Text Solution

    |

  19. cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

    Text Solution

    |

  20. If cos theta = 1/2 (a+(1)/(a)), then the value of cos 3 theta is

    Text Solution

    |