Home
Class 11
MATHS
If sin 2 theta + sin 2 phi =1/2 and cos ...

If `sin 2 theta + sin 2 phi =1/2 and cos 2 theta + cos 2 phi =3/2,` then `cos ^(2) (theta - phi)=`

A

`3/8`

B

`5/8`

C

`3/4`

D

`5/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we have the following equations: 1. \( \sin 2\theta + \sin 2\phi = \frac{1}{2} \) 2. \( \cos 2\theta + \cos 2\phi = \frac{3}{2} \) We need to find \( \cos^2(\theta - \phi) \). ### Step 1: Square the first equation Starting with the first equation: \[ \sin 2\theta + \sin 2\phi = \frac{1}{2} \] Squaring both sides gives: \[ (\sin 2\theta + \sin 2\phi)^2 = \left(\frac{1}{2}\right)^2 \] Expanding the left-hand side: \[ \sin^2 2\theta + \sin^2 2\phi + 2 \sin 2\theta \sin 2\phi = \frac{1}{4} \] ### Step 2: Square the second equation Now, squaring the second equation: \[ \cos 2\theta + \cos 2\phi = \frac{3}{2} \] Squaring both sides gives: \[ (\cos 2\theta + \cos 2\phi)^2 = \left(\frac{3}{2}\right)^2 \] Expanding the left-hand side: \[ \cos^2 2\theta + \cos^2 2\phi + 2 \cos 2\theta \cos 2\phi = \frac{9}{4} \] ### Step 3: Use the Pythagorean identity Using the identity \( \sin^2 x + \cos^2 x = 1 \): From the first equation, we have: \[ \sin^2 2\theta + \sin^2 2\phi = \frac{1}{4} - 2 \sin 2\theta \sin 2\phi \] From the second equation, we have: \[ \cos^2 2\theta + \cos^2 2\phi = \frac{9}{4} - 2 \cos 2\theta \cos 2\phi \] Adding these two results together: \[ (\sin^2 2\theta + \cos^2 2\theta) + (\sin^2 2\phi + \cos^2 2\phi) = \left(\frac{1}{4} - 2 \sin 2\theta \sin 2\phi\right) + \left(\frac{9}{4} - 2 \cos 2\theta \cos 2\phi\right) \] This simplifies to: \[ 1 + 1 = \frac{10}{4} - 2(\sin 2\theta \sin 2\phi + \cos 2\theta \cos 2\phi) \] ### Step 4: Simplify and solve for \( \cos^2(\theta - \phi) \) Using the cosine of the difference identity: \[ \cos(2\theta - 2\phi) = \cos 2\theta \cos 2\phi + \sin 2\theta \sin 2\phi \] Let \( x = \cos(2\theta - 2\phi) \): We can rewrite our equation as: \[ 2 = \frac{10}{4} - 2x \] Solving for \( x \): \[ 2x = \frac{10}{4} - 2 \] \[ 2x = \frac{10}{4} - \frac{8}{4} = \frac{2}{4} = \frac{1}{2} \] \[ x = \frac{1}{4} \] ### Step 5: Find \( \cos^2(\theta - \phi) \) Now, using the identity: \[ \cos^2(\theta - \phi) = \frac{1 + \cos(2(\theta - \phi))}{2} \] Since \( \cos(2(\theta - \phi)) = \cos(2\theta - 2\phi) = \frac{1}{4} \): \[ \cos^2(\theta - \phi) = \frac{1 + \frac{1}{4}}{2} = \frac{\frac{5}{4}}{2} = \frac{5}{8} \] Thus, the final answer is: \[ \cos^2(\theta - \phi) = \frac{5}{8} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If sin2 theta+sin2 phi=(1)/(2) and cos2 theta+cos2 phi=(3)/(2), then cos^(2)(theta-phi)=

If sin 2theta+sin 2phi=1//2 and cos2theta+cos 2phi=3//2 , then cos^(2)(theta-phi)=

If sin2 theta+sin2 phi=(1)/(2) and cos2 theta+cos2 phi=(3)/(2), then cos^(2)(theta-phi)=(A)(3)/(8)(B)(5)/(8)(C)(3)/(4)(D)(5)/(4)

If sim 2theta+sin2phi=1/2 and cos 2theta+cos2phi=3/2 then cos^2(theta-phi)=

If sin theta - sin phi = a and cos theta + cos phi = b then prove that cos(theta + phi) = (a^(2)+b^(2) -2)/2

If sin theta +sin phi=a and cos theta +cos phi =b then prove cos (theta +phi)=(b^(2)-a^(2))/(b^(2)+a^(2))

If sin theta+sin phi=(1)/(2) and cos theta+cos phi=1 then find the value of cot((theta+phi)/(2))

If sin theta+sin phi=(1)/(4) and cos theta+cos phi=(1)/(5) then value of sin(theta+phi) is

If sin theta+ sin phi = a, cos theta + cos phi = b, find the value of sin ( theta+phi) and cos 2theta + cos 2phi where |b|>|a|

The value of ((sin theta + sin phi)/(cos theta + cos phi)+ (cos theta - cos phi)/(sin theta - sin phi)) is :

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=

    Text Solution

    |

  2. 3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x...

    Text Solution

    |

  3. If sin 2 theta + sin 2 phi =1/2 and cos 2 theta + cos 2 phi =3/2, then...

    Text Solution

    |

  4. If n=1,2,3,......., then cosalphacos2alphacos4alpha.......cos2^(n-1)a...

    Text Solution

    |

  5. cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

    Text Solution

    |

  6. If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical va...

    Text Solution

    |

  7. The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)...

    Text Solution

    |

  8. The value of sin ""31/3pi is

    Text Solution

    |

  9. Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

    Text Solution

    |

  10. The valur of (cot x- tan x)/(cot 2x) is

    Text Solution

    |

  11. (sec 8 A-1)/( sec 4A-1)=

    Text Solution

    |

  12. If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to

    Text Solution

    |

  13. cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

    Text Solution

    |

  14. If cos theta = 1/2 (a+(1)/(a)), then the value of cos 3 theta is

    Text Solution

    |

  15. cos ^(3) 110 ^(@) + cos ^(3) 10^(@) + cos ^(3) 130^(@)=

    Text Solution

    |

  16. If sin 6theta =32 cos ^(2) theta sin theta -32 cos ^(3) theta sin thet...

    Text Solution

    |

  17. tan ((pi)/(4) + (theta)/(2)) + tan ((pi)/(4) -(theta)/(2)) is equal to

    Text Solution

    |

  18. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  19. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  20. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |