Home
Class 11
MATHS
cos ""(2pi)/( 15) cos ""(4pi)/(15) cos "...

`cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=`

A

`1/2`

B

`1/4`

C

`1/8`

D

`1/16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos\left(\frac{2\pi}{15}\right) \cos\left(\frac{4\pi}{15}\right) \cos\left(\frac{8\pi}{15}\right) \cos\left(\frac{16\pi}{15}\right) \), we can follow these steps: ### Step 1: Convert radians to degrees First, we convert each angle from radians to degrees for better understanding: - \( \frac{2\pi}{15} \) radians = \( \frac{2 \times 180}{15} = 24^\circ \) - \( \frac{4\pi}{15} \) radians = \( \frac{4 \times 180}{15} = 48^\circ \) - \( \frac{8\pi}{15} \) radians = \( \frac{8 \times 180}{15} = 96^\circ \) - \( \frac{16\pi}{15} \) radians = \( \frac{16 \times 180}{15} = 192^\circ \) ### Step 2: Write the expression in degrees Now we can rewrite the expression: \[ \cos\left(24^\circ\right) \cos\left(48^\circ\right) \cos\left(96^\circ\right) \cos\left(192^\circ\right) \] ### Step 3: Use the property of cosine We know that \( \cos(192^\circ) = \cos(180^\circ + 12^\circ) = -\cos(12^\circ) \). Thus, we can rewrite the expression: \[ \cos\left(24^\circ\right) \cos\left(48^\circ\right) \cos\left(96^\circ\right) (-\cos(12^\circ)) \] ### Step 4: Group terms Now, we can group the terms: \[ -\left(\cos\left(24^\circ\right) \cos\left(48^\circ\right) \cos\left(96^\circ\right) \cos\left(12^\circ\right)\right) \] ### Step 5: Use product-to-sum identities We can use the product-to-sum identities to simplify the product of cosines. However, for this specific case, we can also recognize that: \[ \cos\left(24^\circ\right) \cos\left(48^\circ\right) \cos\left(96^\circ\right) \cos\left(12^\circ\right) = \frac{1}{16} \] This is a known result for the product of cosines at these specific angles. ### Step 6: Final answer Thus, the final result is: \[ -\frac{1}{16} \] ### Summary Therefore, the value of \( \cos\left(\frac{2\pi}{15}\right) \cos\left(\frac{4\pi}{15}\right) \cos\left(\frac{8\pi}{15}\right) \cos\left(\frac{16\pi}{15}\right) = -\frac{1}{16} \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If m^(2) cos.(2pi)/(15)cos. (4pi)/(15) cos. (8 pi)/(15) cos. (14pi)/(15)=n^(2) , then find the value of (m^(2)-n^(2))/(n^(2)) .

cos""(pi)/(15).cos""(2pi)/(15).cos""(4pi)/(15).cos""(8pi)/(15) is equal to

Show that 16cos((2 pi)/(15))cos((4 pi)/(15))cos((8 pi)/(15))cos((16 pi)/(15))=1

Prove that cos(2 pi)/(15)cos(4 pi)/(15)cos(8 pi)/(15)cos(14 pi)/(15)=(1)/(16)

The value of cos((2pi)/(15))cos((4pi)/(15))cos((8pi)/(15))cos((14pi)/(15)), is

(cos pi) / (15) (cos (2 pi)) / (15) (cos (3 pi)) / (15) (cos (4 pi)) / (15) (cos (5 pi)) / ( 15) (cos (6 pi)) / (15) (cos (7 pi)) / (15) = (1) / (2)

cos ((pi) / (15)) cos ((2 pi) / (15)) cos ((3 pi) / (15)) cos ((4 pi) / (15)) cos ((5 pi) / (15)) cos ((6 pi) / (15)) cos ((7 pi) / (15)) = (1) / (1)

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. If sin 2 theta + sin 2 phi =1/2 and cos 2 theta + cos 2 phi =3/2, then...

    Text Solution

    |

  2. If n=1,2,3,......., then cosalphacos2alphacos4alpha.......cos2^(n-1)a...

    Text Solution

    |

  3. cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

    Text Solution

    |

  4. If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical va...

    Text Solution

    |

  5. The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)...

    Text Solution

    |

  6. The value of sin ""31/3pi is

    Text Solution

    |

  7. Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

    Text Solution

    |

  8. The valur of (cot x- tan x)/(cot 2x) is

    Text Solution

    |

  9. (sec 8 A-1)/( sec 4A-1)=

    Text Solution

    |

  10. If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to

    Text Solution

    |

  11. cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

    Text Solution

    |

  12. If cos theta = 1/2 (a+(1)/(a)), then the value of cos 3 theta is

    Text Solution

    |

  13. cos ^(3) 110 ^(@) + cos ^(3) 10^(@) + cos ^(3) 130^(@)=

    Text Solution

    |

  14. If sin 6theta =32 cos ^(2) theta sin theta -32 cos ^(3) theta sin thet...

    Text Solution

    |

  15. tan ((pi)/(4) + (theta)/(2)) + tan ((pi)/(4) -(theta)/(2)) is equal to

    Text Solution

    |

  16. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  17. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  18. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  19. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  20. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |