Home
Class 11
MATHS
(sec 8 A-1)/( sec 4A-1)=...

`(sec 8 A-1)/( sec 4A-1)=`

A

`(tan 2A)/( tan 8A)`

B

`(tan 8A)/(tan 2A)`

C

`(cot 8A)/(cot 2A)`

D

`(tan 6A)/(tan 2A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\sec 8A - 1) / (\sec 4A - 1)\), we can follow these steps: ### Step 1: Rewrite Secant in Terms of Cosine Recall that \(\sec x = \frac{1}{\cos x}\). Therefore, we can rewrite the expression as follows: \[ \sec 8A - 1 = \frac{1}{\cos 8A} - 1 = \frac{1 - \cos 8A}{\cos 8A} \] \[ \sec 4A - 1 = \frac{1}{\cos 4A} - 1 = \frac{1 - \cos 4A}{\cos 4A} \] ### Step 2: Substitute Back into the Expression Now substitute these back into the original expression: \[ \frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\frac{1 - \cos 8A}{\cos 8A}}{\frac{1 - \cos 4A}{\cos 4A}} = \frac{(1 - \cos 8A) \cdot \cos 4A}{(1 - \cos 4A) \cdot \cos 8A} \] ### Step 3: Simplify the Expression Now, we can simplify the expression. The cosine terms can be canceled if they are not equal to zero: \[ = \frac{(1 - \cos 8A) \cdot \cos 4A}{(1 - \cos 4A) \cdot \cos 8A} \] ### Step 4: Use the Identity for Cosine Using the identity \(1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right)\), we can rewrite both \(1 - \cos 8A\) and \(1 - \cos 4A\): \[ 1 - \cos 8A = 2 \sin^2(4A) \] \[ 1 - \cos 4A = 2 \sin^2(2A) \] ### Step 5: Substitute the Identities Substituting these identities into our expression gives: \[ = \frac{2 \sin^2(4A) \cdot \cos 4A}{2 \sin^2(2A) \cdot \cos 8A} \] ### Step 6: Cancel Out the Common Factor The factor of \(2\) cancels out: \[ = \frac{\sin^2(4A) \cdot \cos 4A}{\sin^2(2A) \cdot \cos 8A} \] ### Step 7: Use the Double Angle Identity Recall that \(\sin(2\theta) = 2 \sin(\theta) \cos(\theta)\). Thus, we can express \(\sin(4A)\) as: \[ \sin(4A) = 2 \sin(2A) \cos(2A) \] Substituting this back into our expression: \[ = \frac{(2 \sin(2A) \cos(2A))^2 \cdot \cos 4A}{\sin^2(2A) \cdot \cos 8A} \] ### Step 8: Final Simplification This simplifies to: \[ = \frac{4 \sin^2(2A) \cos^2(2A) \cdot \cos 4A}{\sin^2(2A) \cdot \cos 8A} \] Now, cancel \(\sin^2(2A)\): \[ = \frac{4 \cos^2(2A) \cdot \cos 4A}{\cos 8A} \] ### Final Answer Thus, the final simplified expression is: \[ \frac{4 \cos^2(2A) \cdot \cos 4A}{\cos 8A} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

Prove that (i) (sec 8A -1)/(sec 4A -1) =(tan 8A)/(tan 2A) (ii) (cos A+ sin A)/(cos A - sin A)-(cos A-sin A)/(cos A+sin A)=2 tan 2A

(sec8A-1)/(sec4A-1)=?

If (sec8A-1)/(sec4A-1)=tanmA.cotnA, then: (m,n)-=....

Prove that (sec8A-1)/(sec4A-1)=(tan8A)/(tan2A)

(sec8A-1)/(sec4A-1) is equal to (A) (tan2A)/(tan8A) (B) (tan8A)/(tan2A) (C) (cot8A)/(cot2A) (D) none of these

Prove: (sec A-1)/(sec A+1)=(1-cos A)/(1+cos A)

Prove that (sec8x-1)/(sec4x-1)=(tan8x)/(tan2x)

Prove that: (sec4A-1)/(sec8A-1)=tan2A. cot8A

sqrt((sec A-1)/(sec A+1))+sqrt((scA+1)/(sec A-1))=2csc A

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. Find the value tan (pi/5)+2tan((2pi)/5)+4cot((4pi)/5).

    Text Solution

    |

  2. The valur of (cot x- tan x)/(cot 2x) is

    Text Solution

    |

  3. (sec 8 A-1)/( sec 4A-1)=

    Text Solution

    |

  4. If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to

    Text Solution

    |

  5. cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

    Text Solution

    |

  6. If cos theta = 1/2 (a+(1)/(a)), then the value of cos 3 theta is

    Text Solution

    |

  7. cos ^(3) 110 ^(@) + cos ^(3) 10^(@) + cos ^(3) 130^(@)=

    Text Solution

    |

  8. If sin 6theta =32 cos ^(2) theta sin theta -32 cos ^(3) theta sin thet...

    Text Solution

    |

  9. tan ((pi)/(4) + (theta)/(2)) + tan ((pi)/(4) -(theta)/(2)) is equal to

    Text Solution

    |

  10. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  11. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  12. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  13. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  14. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  15. If theta in ((pi)/(2), (3pi)/(2)), then the value of sqrt(4 cos ^(4) t...

    Text Solution

    |

  16. (m+2)sintheta+(2m-1)costheta=2m+1 then tan theta is

    Text Solution

    |

  17. Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then ...

    Text Solution

    |

  18. What is tan(7(1)/(2))^(@) equal to ?

    Text Solution

    |

  19. sqrt2+ sqrt3+sqrt4+sqrt6 is equal to

    Text Solution

    |

  20. If alpha=22^@30', then (1+cos alpha)(1+cos3alpha)(1+cos5alpha)(1+co...

    Text Solution

    |