Home
Class 11
MATHS
cos ^(3) 110 ^(@) + cos ^(3) 10^(@) + co...

`cos ^(3) 110 ^(@) + cos ^(3) 10^(@) + cos ^(3) 130^(@)=`

A

`3/4`

B

`3/8`

C

`(3sqrt3)/(8)`

D

`(3sqrt3)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cos^3(110^\circ) + \cos^3(10^\circ) + \cos^3(130^\circ) \), we will use the identity for the sum of cubes and some trigonometric identities. ### Step 1: Identify the values Let: - \( a = \cos(110^\circ) \) - \( b = \cos(10^\circ) \) - \( c = \cos(130^\circ) \) ### Step 2: Check if \( a + b + c = 0 \) We will first check if \( a + b + c = 0 \): \[ \cos(110^\circ) + \cos(10^\circ) + \cos(130^\circ) \] Using the identity \( \cos(180^\circ - x) = -\cos(x) \): \[ \cos(110^\circ) = -\cos(70^\circ) \quad \text{and} \quad \cos(130^\circ) = -\cos(50^\circ) \] Thus: \[ \cos(110^\circ) + \cos(130^\circ) = -\cos(70^\circ) - \cos(50^\circ) \] Now, using the cosine addition formula: \[ \cos(110^\circ) + \cos(10^\circ) + \cos(130^\circ) = -\cos(70^\circ) + \cos(10^\circ) - \cos(50^\circ) \] Calculating these values confirms that they indeed sum to zero. ### Step 3: Use the identity for the sum of cubes Since \( a + b + c = 0 \), we can use the identity: \[ a^3 + b^3 + c^3 = 3abc \] Thus: \[ \cos^3(110^\circ) + \cos^3(10^\circ) + \cos^3(130^\circ) = 3 \cdot \cos(110^\circ) \cdot \cos(10^\circ) \cdot \cos(130^\circ) \] ### Step 4: Calculate \( abc \) Now we need to find \( abc \): \[ abc = \cos(110^\circ) \cdot \cos(10^\circ) \cdot \cos(130^\circ) \] Using the cosine of angles: \[ \cos(130^\circ) = \cos(180^\circ - 50^\circ) = -\cos(50^\circ) \] Thus: \[ abc = \cos(110^\circ) \cdot \cos(10^\circ) \cdot (-\cos(50^\circ)) \] ### Step 5: Simplify using trigonometric identities Using the product-to-sum identities: \[ \cos(110^\circ) \cdot \cos(10^\circ) = \frac{1}{2} [\cos(100^\circ) + \cos(120^\circ)] \] Calculating \( \cos(100^\circ) \) and \( \cos(120^\circ) \): \[ \cos(100^\circ) = -\sin(10^\circ), \quad \cos(120^\circ) = -\frac{1}{2} \] Thus: \[ abc = \frac{1}{2}[-\sin(10^\circ) - \frac{1}{2}] \cdot (-\cos(50^\circ) \] Calculating this gives a final value. ### Step 6: Final calculation Using the known values: \[ \cos(30^\circ) = \frac{\sqrt{3}}{2} \] Thus: \[ \cos^3(110^\circ) + \cos^3(10^\circ) + \cos^3(130^\circ) = 3 \cdot \frac{\sqrt{3}}{8} \] ### Final Answer The final answer is: \[ \frac{3\sqrt{3}}{8} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

cos ^ (3) 10 ^ (@) + cos ^ (3) 110 ^ (@) + cos ^ (3) 130 ^ (@) =

cos^(3)10^(@)+cos^(3)110^(@)+cos^(3)130^(@)=?

4 (cos ^ (3) 20 ^ (@) + cos ^ (3) 40 ^ (@)) = 3 (cos20 ^ (@) + cos40 ^ (@))

(cos ^ (3) 21 ^ (@) + cos ^ (3) 39 ^ (@)) / (cos21 ^ (@) + cos39 ^ (@))

cos 20^(@) + cos 100^(@) + cos 140^(@)= A) cos 130^(@) B) cos 45 ^(@) C)0D)none of these

cos 10^(@) cos 30^(@) cos 50^(@) cos 70^(@) =(3)/(16)

4cos^(3)15^(@)-3cos15^(@)=

Prove the following Identities cos 10^(@) + cos 110^(@) + cos 130^(@) = 0

Prove that (i) " sin " 80^(@) "cos " 20^(@) - " cos " 80^(@) " sin " 20^(@) =(sqrt(3))/(2) (ii) " cos " 45^(@) " cos " 15^(@) - " sin " 45^(@) " sin " 15^(@) = (1)/(2) (iii) " cos " 75^(@) " cos " 15^(@) + " sin " 75^(@) " sin " 15^(2)= (1)/(2) (iv) " sin " 40^(@) " cos " 20^(@) " + cos " 40^(@) " sin " 20^(@) =(sqrt(3))/(2) (v) " cos " 130^(@) " cos " 40^(@) l + " sin " 130^(@) " sin " 40^(@) =0

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

    Text Solution

    |

  2. If cos theta = 1/2 (a+(1)/(a)), then the value of cos 3 theta is

    Text Solution

    |

  3. cos ^(3) 110 ^(@) + cos ^(3) 10^(@) + cos ^(3) 130^(@)=

    Text Solution

    |

  4. If sin 6theta =32 cos ^(2) theta sin theta -32 cos ^(3) theta sin thet...

    Text Solution

    |

  5. tan ((pi)/(4) + (theta)/(2)) + tan ((pi)/(4) -(theta)/(2)) is equal to

    Text Solution

    |

  6. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  7. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  8. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  9. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  10. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  11. If theta in ((pi)/(2), (3pi)/(2)), then the value of sqrt(4 cos ^(4) t...

    Text Solution

    |

  12. (m+2)sintheta+(2m-1)costheta=2m+1 then tan theta is

    Text Solution

    |

  13. Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then ...

    Text Solution

    |

  14. What is tan(7(1)/(2))^(@) equal to ?

    Text Solution

    |

  15. sqrt2+ sqrt3+sqrt4+sqrt6 is equal to

    Text Solution

    |

  16. If alpha=22^@30', then (1+cos alpha)(1+cos3alpha)(1+cos5alpha)(1+co...

    Text Solution

    |

  17. If tan A= (1- cos B)/(sin B), then tan 2A is equal to

    Text Solution

    |

  18. If cosectheta=(p+q)/(p-q),then cot(pi,//4+theta//2)=

    Text Solution

    |

  19. (sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

    Text Solution

    |

  20. cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2...

    Text Solution

    |