Home
Class 11
MATHS
tan ((pi)/(4) + (theta)/(2)) + tan ((pi)...

`tan ((pi)/(4) + (theta)/(2)) + tan ((pi)/(4) -(theta)/(2))` is equal to

A

`sec theta`

B

`2 sec theta`

C

`sec "" (theta)/(2)`

D

`sin theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) \), we can use the tangent addition and subtraction formulas. ### Step 1: Use the tangent addition and subtraction formulas The formulas for tangent of a sum and a difference are: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] \[ \tan(a - b) = \frac{\tan a - \tan b}{1 + \tan a \tan b} \] Here, let \( a = \frac{\pi}{4} \) and \( b = \frac{\theta}{2} \). ### Step 2: Calculate \( \tan\left(\frac{\pi}{4}\right) \) We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] ### Step 3: Substitute into the formulas Substituting \( a \) and \( b \) into the formulas, we have: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - 1 \cdot \tan\left(\frac{\theta}{2}\right)} = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} \] \[ \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + 1 \cdot \tan\left(\frac{\theta}{2}\right)} = \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\theta}{2}\right)} \] ### Step 4: Add the two tangent expressions Now we add the two expressions: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} + \frac{1 - \tan\left(\frac{\theta}{2}\right)}{1 + \tan\left(\frac{\theta}{2}\right)} \] ### Step 5: Find a common denominator The common denominator for the two fractions is: \[ (1 - \tan\left(\frac{\theta}{2}\right))(1 + \tan\left(\frac{\theta}{2}\right)) = 1 - \tan^2\left(\frac{\theta}{2}\right) \] ### Step 6: Combine the fractions Now we can combine the fractions: \[ = \frac{(1 + \tan\left(\frac{\theta}{2}\right))(1 + \tan\left(\frac{\theta}{2}\right)) + (1 - \tan\left(\frac{\theta}{2}\right))(1 - \tan\left(\frac{\theta}{2}\right))}{1 - \tan^2\left(\frac{\theta}{2}\right)} \] ### Step 7: Simplify the numerator Expanding the numerator: \[ = \frac{(1 + 2\tan\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\theta}{2}\right)) + (1 - 2\tan\left(\frac{\theta}{2}\right) + \tan^2\left(\frac{\theta}{2}\right))}{1 - \tan^2\left(\frac{\theta}{2}\right)} \] \[ = \frac{2 + 2\tan^2\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)} \] ### Step 8: Factor out common terms This can be factored as: \[ = \frac{2(1 + \tan^2\left(\frac{\theta}{2}\right))}{1 - \tan^2\left(\frac{\theta}{2}\right)} \] ### Step 9: Use the identity for tangent Using the identity \( 1 + \tan^2 x = \sec^2 x \): \[ = \frac{2 \sec^2\left(\frac{\theta}{2}\right)}{1 - \tan^2\left(\frac{\theta}{2}\right)} \] ### Step 10: Final result Using the identity \( \sec^2 x = \frac{1}{\cos^2 x} \) and knowing that \( 1 - \tan^2 x = \cos 2x \): \[ = \frac{2}{\cos\theta} \] Thus, the final result is: \[ \tan\left(\frac{\pi}{4} + \frac{\theta}{2}\right) + \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right) = \frac{2}{\cos\theta} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

tan ((pi)/(4)+theta) tan ((3pi)/( 4) + theta) is equal to

If tan ((pi)/(4) + theta) + tan ((pi )/(4) - theta) = p sec 2 theta) then the vlaue of p is equal to :

tan((pi)/(4)+theta)xx tan((3 pi)/(4)+theta)=-1

tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=2tan2 theta

sec theta+tan theta=tan((pi)/(4)+(theta)/(2))

If pi < theta < (3pi)/(2) and cos theta = -3/5 , then tan ((theta)/(4)) is equal to

If tan((pi)/(4)+theta)+tan((pi)/(4)-theta)=4 then theta=

tan((pi)/(4)+theta)-tan((pi)/(4)-theta)=?

(1-tan^(2)((pi)/(4)-theta))/(1+tan^(2)((pi)/(4)-theta))=sin2 theta

"Tan((pi)/(4)-theta)tan((pi)/(4)+theta)=

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. cos ^(3) 110 ^(@) + cos ^(3) 10^(@) + cos ^(3) 130^(@)=

    Text Solution

    |

  2. If sin 6theta =32 cos ^(2) theta sin theta -32 cos ^(3) theta sin thet...

    Text Solution

    |

  3. tan ((pi)/(4) + (theta)/(2)) + tan ((pi)/(4) -(theta)/(2)) is equal to

    Text Solution

    |

  4. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  5. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  6. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  7. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  8. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  9. If theta in ((pi)/(2), (3pi)/(2)), then the value of sqrt(4 cos ^(4) t...

    Text Solution

    |

  10. (m+2)sintheta+(2m-1)costheta=2m+1 then tan theta is

    Text Solution

    |

  11. Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then ...

    Text Solution

    |

  12. What is tan(7(1)/(2))^(@) equal to ?

    Text Solution

    |

  13. sqrt2+ sqrt3+sqrt4+sqrt6 is equal to

    Text Solution

    |

  14. If alpha=22^@30', then (1+cos alpha)(1+cos3alpha)(1+cos5alpha)(1+co...

    Text Solution

    |

  15. If tan A= (1- cos B)/(sin B), then tan 2A is equal to

    Text Solution

    |

  16. If cosectheta=(p+q)/(p-q),then cot(pi,//4+theta//2)=

    Text Solution

    |

  17. (sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

    Text Solution

    |

  18. cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2...

    Text Solution

    |

  19. lf sintheta+sinphi =a and costheta + cosphi = b, find the value of tan...

    Text Solution

    |

  20. The value of expression (1+ sin 2 alpha)/(cos (2 alpha -2pi) tan (al...

    Text Solution

    |