Home
Class 11
MATHS
If cos theta =(cos alpha - cos beta)/( 1...

If `cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta),` then one of the values of `tan ((theta )/(2)) `is

A

`cot "" beta/2 tan "" alpha /2`

B

`tan alpha tan "" beta/2`

C

`tan ""beta/2 cot "" alpha/2`

D

`tan ^(2) "" alpha/ 2 tan ^(2)"" beta/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find one of the values of \( \tan\left(\frac{\theta}{2}\right) \) given that \[ \cos \theta = \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta}. \] ### Step-by-step Solution: 1. **Recall the formula for \( \tan\left(\frac{\theta}{2}\right) \)**: We know that: \[ \tan^2\left(\frac{\theta}{2}\right) = \frac{1 - \cos \theta}{1 + \cos \theta}. \] 2. **Substitute \( \cos \theta \)**: Substitute the given expression for \( \cos \theta \): \[ \tan^2\left(\frac{\theta}{2}\right) = \frac{1 - \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta}}{1 + \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta}}. \] 3. **Simplify the numerator**: The numerator becomes: \[ 1 - \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta} = \frac{(1 - \cos \alpha \cos \beta) - (\cos \alpha - \cos \beta)}{1 - \cos \alpha \cos \beta}. \] Simplifying the numerator: \[ = \frac{1 - \cos \alpha \cos \beta - \cos \alpha + \cos \beta}{1 - \cos \alpha \cos \beta} = \frac{(1 - \cos \alpha) + (\cos \beta - \cos \alpha \cos \beta)}{1 - \cos \alpha \cos \beta}. \] 4. **Simplify the denominator**: The denominator becomes: \[ 1 + \frac{\cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta} = \frac{(1 - \cos \alpha \cos \beta) + (\cos \alpha - \cos \beta)}{1 - \cos \alpha \cos \beta}. \] Simplifying the denominator: \[ = \frac{(1 - \cos \alpha \cos \beta) + \cos \alpha - \cos \beta}{1 - \cos \alpha \cos \beta} = \frac{(1 + \cos \alpha - \cos \beta - \cos \alpha \cos \beta)}{1 - \cos \alpha \cos \beta}. \] 5. **Combine the results**: Now, we can write: \[ \tan^2\left(\frac{\theta}{2}\right) = \frac{(1 - \cos \alpha) + (\cos \beta - \cos \alpha \cos \beta)}{(1 + \cos \alpha - \cos \beta - \cos \alpha \cos \beta)}. \] 6. **Using the half-angle identities**: We can relate this to the tangent half-angle formulas: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right)}. \] 7. **Final Result**: Thus, we find that: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right)}. \] ### Conclusion: One of the values of \( \tan\left(\frac{\theta}{2}\right) \) is given by: \[ \tan\left(\frac{\theta}{2}\right) = \tan\left(\frac{\alpha}{2}\right) \cdot \tan\left(\frac{\beta}{2}\right). \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of (tan)(theta)/(2)=((tan alpha)/(2)-(tan beta)/(2))/(1-tan(alpha)/(2)(tan beta)/(2))

If cos theta=(cos alpha-cos beta)/(1-sin alpha sin beta), prove that one value of tan(theta)/(2)=(tan(alpha)/(2)-tan(beta)/(2))/(1-tan(alpha)/(2)-tan(beta)/(2))

cos theta = (cos alpha-cos beta) / (1-cos alpha * cos beta) rArr tan ^ (2) ((theta) / (2)) tan ^ (2) ((beta) / (2))

If cos theta=(cos alpha+cos beta)/(1+cos alpha cos beta), prove that (tan theta)/(2)=-(tan alpha)/(2)(tan beta)/(2)

If cos theta=(cos alpha-cos beta)/(1-cos alpha*cos beta), prove that tan(theta)/(2)=+-(tan alpha)/(2)(cot beta)/(2)

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that (tan theta)/(2)=+-(tan alpha)/(2)(cot beta)/(2)

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

If sin alpha sin beta-cos alpha cos beta+1=0, then the value of 1+cot alpha tan beta is

Prove that cos theta =(cos alpha- cos beta)/(1 -cos alpha*cos beta) ⇔ tan theta/2 = pm tan alpha/2 *cot beta/2 .

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  2. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  3. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  4. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  5. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  6. If theta in ((pi)/(2), (3pi)/(2)), then the value of sqrt(4 cos ^(4) t...

    Text Solution

    |

  7. (m+2)sintheta+(2m-1)costheta=2m+1 then tan theta is

    Text Solution

    |

  8. Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then ...

    Text Solution

    |

  9. What is tan(7(1)/(2))^(@) equal to ?

    Text Solution

    |

  10. sqrt2+ sqrt3+sqrt4+sqrt6 is equal to

    Text Solution

    |

  11. If alpha=22^@30', then (1+cos alpha)(1+cos3alpha)(1+cos5alpha)(1+co...

    Text Solution

    |

  12. If tan A= (1- cos B)/(sin B), then tan 2A is equal to

    Text Solution

    |

  13. If cosectheta=(p+q)/(p-q),then cot(pi,//4+theta//2)=

    Text Solution

    |

  14. (sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

    Text Solution

    |

  15. cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2...

    Text Solution

    |

  16. lf sintheta+sinphi =a and costheta + cosphi = b, find the value of tan...

    Text Solution

    |

  17. The value of expression (1+ sin 2 alpha)/(cos (2 alpha -2pi) tan (al...

    Text Solution

    |

  18. Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for t...

    Text Solution

    |

  19. Let fn(Theta)=(tan(Theta/2))(1 +sec(Theta))(1+sec(2Theta)).....(1+sec(...

    Text Solution

    |

  20. The sum of the series sum (n=1) ^(oo) sin ((n!pi)/(720)) is

    Text Solution

    |