Home
Class 11
MATHS
Given that cos ((alpha -beta)/(2)) = 2 c...

Given that `cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)),` then ` tan ""(alpha)/(2) tan ""(beta)/(2)` is equal to

A

`1/2`

B

`1/3`

C

`1/4`

D

`1/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \] ### Step 1: Rewrite the cosine terms using angle subtraction and addition formulas Using the cosine subtraction and addition formulas, we can express the left and right sides: \[ \cos\left(\frac{\alpha - \beta}{2}\right) = \cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) + \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) \] \[ 2 \cos\left(\frac{\alpha + \beta}{2}\right) = 2\left(\cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) - \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right)\right) \] ### Step 2: Set the equations equal Now we set the two expressions equal to each other: \[ \cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) + \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) = 2\left(\cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) - \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right)\right) \] ### Step 3: Simplify the equation Expanding the right side gives: \[ \cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) + \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) = 2\cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) - 2\sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) \] Rearranging terms leads to: \[ \sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) + 2\sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) = 2\cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) \] This simplifies to: \[ 3\sin\left(\frac{\alpha}{2}\right) \sin\left(\frac{\beta}{2}\right) = 2\cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right) \] ### Step 4: Divide both sides by \(\cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\beta}{2}\right)\) We can express this as: \[ 3 \frac{\sin\left(\frac{\alpha}{2}\right)}{\cos\left(\frac{\alpha}{2}\right)} \cdot \frac{\sin\left(\frac{\beta}{2}\right)}{\cos\left(\frac{\beta}{2}\right)} = 2 \] This leads to: \[ 3 \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) = 2 \] ### Step 5: Solve for \( \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) \) Dividing both sides by 3 gives: \[ \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) = \frac{2}{3} \] ### Final Answer Thus, the value of \( \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right) \) is: \[ \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

If cos alpha=(2cos beta-1)/(2-cos beta),0

Show that cos^(-1)((cos alpha+cos beta)/(1+cos alpha cos beta))=2tan^(-1)(tan((alpha)/(2))tan((beta)/(2)))

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/(2))=

If tan (alpha + beta) = 2 and tan (alpha - beta) = 1, then tan (2 alpha ) is equal to:

If sin(alpha+beta)=1,sin(alpha-beta)=(1)/(2) where alpha,beta in[0,(pi)/(2)], then tan(alpha+2 beta)tan(2 alpha+beta) is equal to

If sin alpha+sin beta=a and cos alpha+cos beta=b then tan((alpha-beta)/(2)) is equal to

Prove that cos theta =(cos alpha- cos beta)/(1 -cos alpha*cos beta) ⇔ tan theta/2 = pm tan alpha/2 *cot beta/2 .

cos alpha=(2cos beta-1)/(2-cos beta)(0

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  2. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  3. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  4. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  5. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  6. If theta in ((pi)/(2), (3pi)/(2)), then the value of sqrt(4 cos ^(4) t...

    Text Solution

    |

  7. (m+2)sintheta+(2m-1)costheta=2m+1 then tan theta is

    Text Solution

    |

  8. Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then ...

    Text Solution

    |

  9. What is tan(7(1)/(2))^(@) equal to ?

    Text Solution

    |

  10. sqrt2+ sqrt3+sqrt4+sqrt6 is equal to

    Text Solution

    |

  11. If alpha=22^@30', then (1+cos alpha)(1+cos3alpha)(1+cos5alpha)(1+co...

    Text Solution

    |

  12. If tan A= (1- cos B)/(sin B), then tan 2A is equal to

    Text Solution

    |

  13. If cosectheta=(p+q)/(p-q),then cot(pi,//4+theta//2)=

    Text Solution

    |

  14. (sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

    Text Solution

    |

  15. cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2...

    Text Solution

    |

  16. lf sintheta+sinphi =a and costheta + cosphi = b, find the value of tan...

    Text Solution

    |

  17. The value of expression (1+ sin 2 alpha)/(cos (2 alpha -2pi) tan (al...

    Text Solution

    |

  18. Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for t...

    Text Solution

    |

  19. Let fn(Theta)=(tan(Theta/2))(1 +sec(Theta))(1+sec(2Theta)).....(1+sec(...

    Text Solution

    |

  20. The sum of the series sum (n=1) ^(oo) sin ((n!pi)/(720)) is

    Text Solution

    |