Home
Class 11
MATHS
The sum of the series sum (n=1) ^(oo) si...

The sum of the series `sum _(n=1) ^(oo) sin ((n!pi)/(720))` is

A

`sin ((pi)/(180)) + sin ((pi)/(360)) + sin ((pi)/(540))`

B

`sin ((pi)/(6)) +sin ((pi)/(30)) + sin ((pi)/(120)) + sin ((pi)/(360))`

C

`sin ((pi)/(6)) + sin ((pi)/(30)) + sin ((pi)/(120)) + sin ((pi)/(360))+sin ((pi)/(720))`

D

`sin ((pi)/(180))+ sin ((pi)/(360))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \( S = \sum_{n=1}^{\infty} \sin\left(\frac{n! \pi}{720}\right) \), we will analyze the terms of the series step by step. ### Step 1: Write out the first few terms of the series We start by substituting values of \( n \) into the series. - For \( n = 1 \): \[ \sin\left(\frac{1! \pi}{720}\right) = \sin\left(\frac{\pi}{720}\right) \] - For \( n = 2 \): \[ \sin\left(\frac{2! \pi}{720}\right) = \sin\left(\frac{2 \pi}{720}\right) = \sin\left(\frac{\pi}{360}\right) \] - For \( n = 3 \): \[ \sin\left(\frac{3! \pi}{720}\right) = \sin\left(\frac{6 \pi}{720}\right) = \sin\left(\frac{\pi}{120}\right) \] - For \( n = 4 \): \[ \sin\left(\frac{4! \pi}{720}\right) = \sin\left(\frac{24 \pi}{720}\right) = \sin\left(\frac{\pi}{30}\right) \] - For \( n = 5 \): \[ \sin\left(\frac{5! \pi}{720}\right) = \sin\left(\frac{120 \pi}{720}\right) = \sin\left{\frac{\pi}{6}\right) \] - For \( n = 6 \): \[ \sin\left(\frac{6! \pi}{720}\right) = \sin\left(\frac{720 \pi}{720}\right) = \sin(\pi) = 0 \] ### Step 2: Identify the pattern From \( n = 6 \) onwards, the factorial grows quickly, and we can see that: - For \( n \geq 6 \): \[ n! \text{ is a multiple of } 720, \text{ hence } \sin\left(\frac{n! \pi}{720}\right) = 0 \] ### Step 3: Sum the non-zero terms Thus, the series reduces to the sum of the first five terms: \[ S = \sin\left(\frac{\pi}{720}\right) + \sin\left(\frac{\pi}{360}\right) + \sin\left(\frac{\pi}{120}\right) + \sin\left(\frac{\pi}{30}\right) + \sin\left(\frac{\pi}{6}\right) \] ### Step 4: Evaluate each sine term Now we will evaluate each sine term: - \( \sin\left(\frac{\pi}{720}\right) \) is a small positive value. - \( \sin\left(\frac{\pi}{360}\right) \) is also a small positive value. - \( \sin\left(\frac{\pi}{120}\right) = \sin(15^\circ) = \frac{\sqrt{6} - \sqrt{2}}{4} \). - \( \sin\left(\frac{\pi}{30}\right) = \sin(6^\circ) = \frac{1}{2} \). - \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \). ### Step 5: Combine the results The sum \( S \) can be approximated as: \[ S \approx \sin\left(\frac{\pi}{720}\right) + \sin\left(\frac{\pi}{360}\right) + \frac{\sqrt{6} - \sqrt{2}}{4} + \frac{1}{2} + \frac{1}{2} \] ### Conclusion Thus, the sum of the series \( S = \sum_{n=1}^{\infty} \sin\left(\frac{n! \pi}{720}\right) \) converges to a finite value, which is the sum of the first five terms. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise EVALUATION TEST|12 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|60 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

The sum of the series sum_(n=1)^oo(n^2+6n+10)/((2n+1)!) is equal to

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The sum of the series sum_(r=0) ^(n) ""^(2n)C_(r), is

Find the sum of the series (sum_(r=1)^(n) rxxr !)

Sum of the series sum_(r=1)^(n)(r^(2)+1)r!, is

TARGET PUBLICATION-TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES -COMPETITIVE THINKING
  1. If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is

    Text Solution

    |

  2. If 90^(@) lt A lt 180^(@) and sin A =4/5, then tan ""A/2 is equal to

    Text Solution

    |

  3. If theta is an acute angle and sin((theta)/(2))=sqrt((x-1)/(2x)) ,then...

    Text Solution

    |

  4. If tan(x/2)=cosec x - sin x then the value of tan^2(x/2) is

    Text Solution

    |

  5. If cos theta =(cos alpha - cos beta)/( 1- cos alpha cos beta), then on...

    Text Solution

    |

  6. If theta in ((pi)/(2), (3pi)/(2)), then the value of sqrt(4 cos ^(4) t...

    Text Solution

    |

  7. (m+2)sintheta+(2m-1)costheta=2m+1 then tan theta is

    Text Solution

    |

  8. Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then ...

    Text Solution

    |

  9. What is tan(7(1)/(2))^(@) equal to ?

    Text Solution

    |

  10. sqrt2+ sqrt3+sqrt4+sqrt6 is equal to

    Text Solution

    |

  11. If alpha=22^@30', then (1+cos alpha)(1+cos3alpha)(1+cos5alpha)(1+co...

    Text Solution

    |

  12. If tan A= (1- cos B)/(sin B), then tan 2A is equal to

    Text Solution

    |

  13. If cosectheta=(p+q)/(p-q),then cot(pi,//4+theta//2)=

    Text Solution

    |

  14. (sqrt2 - sin alpha - cos alpha )/( sin alpha - cos alpha)=

    Text Solution

    |

  15. cos 2 (theta+ phi) +4 cos (theta + phi ) sin theta sin phi + 2 sin ^(2...

    Text Solution

    |

  16. lf sintheta+sinphi =a and costheta + cosphi = b, find the value of tan...

    Text Solution

    |

  17. The value of expression (1+ sin 2 alpha)/(cos (2 alpha -2pi) tan (al...

    Text Solution

    |

  18. Let f : (-1, 1) -> R be such that f(cos4theta) = 2/(2-sec^2theta for t...

    Text Solution

    |

  19. Let fn(Theta)=(tan(Theta/2))(1 +sec(Theta))(1+sec(2Theta)).....(1+sec(...

    Text Solution

    |

  20. The sum of the series sum (n=1) ^(oo) sin ((n!pi)/(720)) is

    Text Solution

    |