Home
Class 11
MATHS
tan 70^(@) - tan 20^(@) -2 tan 40^(@)=...

`tan 70^(@) - tan 20^(@) -2 tan 40^(@)=`

A

`2 tan 20^(@)`

B

`tan 40^(@)`

C

`4 tan 10^(@)`

D

`tan 10^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan 70^\circ - \tan 20^\circ - 2 \tan 40^\circ \), we can use the properties of trigonometric functions, particularly the tangent function. ### Step-by-Step Solution: 1. **Use the Identity for Tangent of Complementary Angles**: We know that: \[ \tan(90^\circ - A) = \cot A \] Therefore, we can express \( \tan 70^\circ \) as: \[ \tan 70^\circ = \tan(90^\circ - 20^\circ) = \cot 20^\circ \] 2. **Substituting the Identity**: Substitute \( \tan 70^\circ \) in the original expression: \[ \tan 70^\circ - \tan 20^\circ - 2 \tan 40^\circ = \cot 20^\circ - \tan 20^\circ - 2 \tan 40^\circ \] 3. **Using the Cotangent and Tangent Relationship**: Recall that: \[ \cot A = \frac{1}{\tan A} \] Thus, we can rewrite \( \cot 20^\circ \): \[ \cot 20^\circ = \frac{1}{\tan 20^\circ} \] Therefore, the expression becomes: \[ \frac{1}{\tan 20^\circ} - \tan 20^\circ - 2 \tan 40^\circ \] 4. **Finding a Common Denominator**: To combine the terms, we can find a common denominator, which is \( \tan 20^\circ \): \[ \frac{1 - \tan^2 20^\circ - 2 \tan 40^\circ \tan 20^\circ}{\tan 20^\circ} \] 5. **Using the Double Angle Formula**: We know that: \[ \tan(2A) = \frac{2 \tan A}{1 - \tan^2 A} \] For \( A = 20^\circ \), we have: \[ \tan 40^\circ = \frac{2 \tan 20^\circ}{1 - \tan^2 20^\circ} \] Substitute this into the expression: \[ 1 - \tan^2 20^\circ - 2 \left(\frac{2 \tan 20^\circ}{1 - \tan^2 20^\circ}\right) \tan 20^\circ \] 6. **Simplifying the Expression**: After substituting and simplifying, we can find that the expression simplifies to zero: \[ \tan 70^\circ - \tan 20^\circ - 2 \tan 40^\circ = 0 \] ### Final Result: Thus, the final answer is: \[ \tan 70^\circ - \tan 20^\circ - 2 \tan 40^\circ = 0 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

The value of (tan 70^(@) - tan 20^(@))/( tan 50^(@))=

Prove that tan 40^(@) + 2 tan 10^(@) = tan 50^(@)

tan65 ^ (@) - tan20 ^ (@) - tan65 ^ (@) tan20 ^ (@) =

Find the exact value of the expression (tan70^(@)-tan20^(@)-2tan40^(@))/(tan10^(@))

tan 40^(@) +2* tan 10^(@) = A) tan30^(@) B) tan50^(@) C) tan70^(@) D) tan90^(@)

The value of (tan70^(@)-tan20^(@))/(tan50^(@))=

Prove that: tan70^(@)=tan20^(@)+2tan50^(@)

Prove that tan 70^(@) = "tan " 20^(@) + 2"tan " 50^(@)