Home
Class 11
MATHS
If sqrtx + (1)/( sqrtx) = 2 cos theta, ...

If `sqrtx + (1)/( sqrtx) = 2 cos theta, ` then `x ^(6) +x^(-6)=`

A

`2 cos 6 theta`

B

`2 cos 12theta`

C

`2 cos 3 theta`

D

`2 sin 3 theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \sqrt{x} + \frac{1}{\sqrt{x}} = 2 \cos \theta \] ### Step 1: Square both sides We will square both sides of the equation to eliminate the square root. \[ \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 = (2 \cos \theta)^2 \] This expands to: \[ x + 2 + \frac{1}{x} = 4 \cos^2 \theta \] ### Step 2: Rearrange the equation Now, we can rearrange the equation to isolate \(x + \frac{1}{x}\): \[ x + \frac{1}{x} = 4 \cos^2 \theta - 2 \] ### Step 3: Factor out the 2 We can factor out a 2 from the right side: \[ x + \frac{1}{x} = 2(2 \cos^2 \theta - 1) \] ### Step 4: Use the double angle formula Using the double angle formula for cosine, \(2 \cos^2 \theta - 1 = \cos(2\theta)\): \[ x + \frac{1}{x} = 2 \cos(2\theta) \] ### Step 5: Square again Next, we square both sides again to find \(x^2 + \frac{1}{x^2}\): \[ \left(x + \frac{1}{x}\right)^2 = (2 \cos(2\theta))^2 \] This expands to: \[ x^2 + 2 + \frac{1}{x^2} = 4 \cos^2(2\theta) \] ### Step 6: Rearrange for \(x^2 + \frac{1}{x^2}\) Rearranging gives us: \[ x^2 + \frac{1}{x^2} = 4 \cos^2(2\theta) - 2 \] ### Step 7: Factor out the 2 again Factoring out a 2: \[ x^2 + \frac{1}{x^2} = 2(2 \cos^2(2\theta) - 1) \] ### Step 8: Use the double angle formula again Using the double angle formula again, we have: \[ x^2 + \frac{1}{x^2} = 2 \cos(4\theta) \] ### Step 9: Cube to find \(x^6 + \frac{1}{x^6}\) Now, we will use the identity for cubes: \[ \left(x^2 + \frac{1}{x^2}\right)^3 = x^6 + \frac{1}{x^6} + 3\left(x^2 + \frac{1}{x^2}\right) \] Substituting \(x^2 + \frac{1}{x^2}\): \[ (2 \cos(4\theta))^3 = x^6 + \frac{1}{x^6} + 3(2 \cos(4\theta)) \] ### Step 10: Calculate \(x^6 + \frac{1}{x^6}\) Calculating \( (2 \cos(4\theta))^3 \): \[ 8 \cos^3(4\theta) = x^6 + \frac{1}{x^6} + 6 \cos(4\theta) \] Rearranging gives us: \[ x^6 + \frac{1}{x^6} = 8 \cos^3(4\theta) - 6 \cos(4\theta) \] ### Step 11: Factor out the common term Factoring out \(2 \cos(4\theta)\): \[ x^6 + \frac{1}{x^6} = 2 \cos(4\theta)(4 \cos^2(4\theta) - 3) \] ### Step 12: Use the triple angle formula Using the triple angle formula for cosine, we have: \[ x^6 + \frac{1}{x^6} = 2 \cos(12\theta) \] ### Final Answer Thus, the final answer is: \[ x^6 + \frac{1}{x^6} = 2 \cos(12\theta) \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|101 Videos
  • STRAIGHT LINE

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=sqrtx-(1)/(sqrtx)

1/(sqrt(x+1) - sqrtx)

1/(sqrt(x+1) - sqrtx)

1/sqrtx (sqrtx+1/sqrtx)^2

y = x+sqrtx+1/sqrtx

tan^(-1)(cos sqrtx)

int(1)/(sqrtx+x)dx=

If sqrtx+(1)/(sqrtx)=3 , then the value of x^3+(1)/(x^3) is:

If 5^(sqrtx) + 12^(sqrtx) = 13^(sqrtx) , then x is equal to

(1)/(sqrt(x+1)+sqrtx)