Home
Class 12
MATHS
If A=[(cos alpha,sin alpha),(-sin alpha,...

If `A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)]` and A. adj `A=[(k,0),(0,k)]` , then k is equal to

A

0

B

1

C

`sin alpha cos alpha `

D

` cos 2alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the matrix \( A \) and the equation \( A \cdot \text{adj} A = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \). ### Step-by-step Solution: 1. **Define the matrix \( A \)**: \[ A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \] 2. **Find the adjoint of matrix \( A \)**: The adjoint of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj} A = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( a = \cos \alpha \) - \( b = \sin \alpha \) - \( c = -\sin \alpha \) - \( d = \cos \alpha \) Therefore, the adjoint of \( A \) is: \[ \text{adj} A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] 3. **Multiply \( A \) and \( \text{adj} A \)**: We need to compute \( A \cdot \text{adj} A \): \[ A \cdot \text{adj} A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \] Performing the multiplication: - First row, first column: \[ \cos \alpha \cdot \cos \alpha + \sin \alpha \cdot \sin \alpha = \cos^2 \alpha + \sin^2 \alpha = 1 \] - First row, second column: \[ \cos \alpha \cdot (-\sin \alpha) + \sin \alpha \cdot \cos \alpha = -\sin \alpha \cos \alpha + \sin \alpha \cos \alpha = 0 \] - Second row, first column: \[ -\sin \alpha \cdot \cos \alpha + \cos \alpha \cdot \sin \alpha = -\sin \alpha \cos \alpha + \sin \alpha \cos \alpha = 0 \] - Second row, second column: \[ -\sin \alpha \cdot (-\sin \alpha) + \cos \alpha \cdot \cos \alpha = \sin^2 \alpha + \cos^2 \alpha = 1 \] Thus, we have: \[ A \cdot \text{adj} A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] 4. **Set the result equal to the given matrix**: We know from the problem statement: \[ A \cdot \text{adj} A = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \] Therefore, we can equate: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \] 5. **Compare the matrices**: From the comparison, we find: \[ k = 1 \] ### Final Answer: Thus, the value of \( k \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

A=[[Cos alpha,sin alpha],[-Sin alpha,cos alpha]] then A^(2)

A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] , then find | A |

If A = [(cos alpha,sin alpha),(-sin alpha,cos alpha)] , then A^(10) = .........

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If A=[(cos alpha, -sin alpha, 0),(sin alpha, cos alpha,0),(0,0,1)] then A^(-1) is

If A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}] , then

If A=[{:(cos alpha, sin alpha),(-sin alpha, cos alpha):}] , then what is A"A"^(T) equal to (where A^(T) is the transpose of A) ?

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. If A=[{:(3,2),(1,4):}], then what is A (adj A) equal to ?

    Text Solution

    |

  2. If A=[(cos x, sin x),(-sin x,cos x)], then A(adj A)=

    Text Solution

    |

  3. If A=[(cos alpha,sin alpha),(-sin alpha,cos alpha)] and A. adj A=[(k,...

    Text Solution

    |

  4. If k is a scalar and l is a unit matrix of order 3 then adj(kl) is equ...

    Text Solution

    |

  5. If x is square materix of order 3xx3 and lambda is a scalar, then adj ...

    Text Solution

    |

  6. If A is a singular matrix, then adj A is a. singular b. non singula...

    Text Solution

    |

  7. If d is the determinant of a square matrix A of order n , then the ...

    Text Solution

    |

  8. If A={:[(4,2),(3,4)],:}" then: "|adj,A|=

    Text Solution

    |

  9. For a invertible matrix A if A (adj A) =[(10,0),(0,10)] then |A...

    Text Solution

    |

  10. If A is a matrix of order 3, such that A(adj A)=10I, then |adj A|=

    Text Solution

    |

  11. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  12. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  13. adj AB -(adj B)(adj A) =

    Text Solution

    |

  14. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  15. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  16. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  17. If A=[(5,4),(3,2)] then A^(-1) is equal to

    Text Solution

    |

  18. The inverse of matrix A=[[2, -3], [-4, 2]] is

    Text Solution

    |

  19. If U=[((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))], then U^(-...

    Text Solution

    |

  20. If A=[{:(a, b), (c, d):}] " then " A^(-1) = .

    Text Solution

    |