Home
Class 12
MATHS
Let A be a 2xx2 matrix Statement -1 ad...

Let A be a `2xx2` matrix
Statement -1 adj `(adjA)=A`
Statement-2 `abs(adjA) = abs(A)`

A

Statement -1 is true , Statement -2 is true ,
Statement -2 is a correct explanation for Statement -1

B

Statement -1 is true , Statement -2 is true,
Statement -2 is not a correct explanation for Statement -1

C

Statement-1 is true , Statement -2 is false

D

Statement -1 is false , Statement -2 is true

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

Let A be 2 x 2 matrix.Statement I adj (adj A) = A Statement II |adj A| = A

Let A be a 2xx2 matrix. Assertion (A) : adj(adjA)=A Reason (R ) : |adjA|=|A|

Let A be a square matrix of order n. Statement - 1 : abs(adj(adj A))=absA^(n-1)^2 Statement -2 : adj(adj A)=absA^(n-2)A

If A is a square matrix, then adj(A')-(adjA)'=

If A is a ntimesn matrix and |A|ne0 , then adj(adjA)=

A is a 3times3 matrix and |A|=2 then |adj(adj(adjA))| =

Let A be a square matrix of order n. Then; A(adjA)=|A|I_(n)=(adjA)A

If A is a 3xx3 matrix and |adjA|=16 then |A|=

If A is a 3xx3 matrix and |adjA|= 16 then |A| =

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. If A is a matrix of order 3, such that A(adj A)=10I, then |adj A|=

    Text Solution

    |

  2. If the adjoint of a 3 3 matrix P is 1 4 4 2 1 7 1 1 3 , then the po...

    Text Solution

    |

  3. Let A be a 2xx2 matrix Statement -1 adj (adjA)=A Statement-2 abs(a...

    Text Solution

    |

  4. adj AB -(adj B)(adj A) =

    Text Solution

    |

  5. If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

    Text Solution

    |

  6. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  7. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  8. If A=[(5,4),(3,2)] then A^(-1) is equal to

    Text Solution

    |

  9. The inverse of matrix A=[[2, -3], [-4, 2]] is

    Text Solution

    |

  10. If U=[((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))], then U^(-...

    Text Solution

    |

  11. If A=[{:(a, b), (c, d):}] " then " A^(-1) = .

    Text Solution

    |

  12. The invrse of the matrix [(2,0,0),(0,3,0),(0,0,4)] is

    Text Solution

    |

  13. If A=[((k)/(2),0,0),(0,(l)/(2),0),(0,0,(m)/(4))] and A^(-1)= [((1)/(2)...

    Text Solution

    |

  14. What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?

    Text Solution

    |

  15. If A=[(1,-1,0),(1,0,0),(0,0,-1)], then A^(-1) is

    Text Solution

    |

  16. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  17. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  18. The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-...

    Text Solution

    |

  19. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

    Text Solution

    |

  20. if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...

    Text Solution

    |