Home
Class 12
MATHS
If A=[(5,4),(3,2)] then A^(-1) is equal ...

If `A=[(5,4),(3,2)]` then `A^(-1)` is equal to

A

`(1)/(2)[(-2,4),(3,5)]`

B

`(1)/(2)[(5,3),(4,2)]`

C

`(1)/(2)[(5,-4),(-3,2)]`

D

`-(1)/(2)[(2,-4),(-3,5)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 5 & 4 \\ 3 & 2 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The formula for the determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 5 \) - \( b = 4 \) - \( c = 3 \) - \( d = 2 \) Calculating the determinant: \[ \text{det}(A) = (5)(2) - (4)(3) = 10 - 12 = -2 \] ### Step 2: Check if the Inverse Exists An inverse exists if the determinant is not equal to zero. Since \( \text{det}(A) = -2 \neq 0 \), the inverse exists. ### Step 3: Calculate the Adjoint of Matrix A For a 2x2 matrix, the adjoint is found by swapping the elements on the main diagonal and changing the signs of the elements on the other diagonal. Thus, the adjoint of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 2 & -4 \\ -3 & 5 \end{pmatrix} \] ### Step 4: Calculate the Inverse of Matrix A The formula for the inverse of a matrix \( A \) is given by: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values we found: \[ A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} 2 & -4 \\ -3 & 5 \end{pmatrix} = \begin{pmatrix} \frac{2}{-2} & \frac{-4}{-2} \\ \frac{-3}{-2} & \frac{5}{-2} \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ \frac{3}{2} & -\frac{5}{2} \end{pmatrix} \] ### Final Answer Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -1 & 2 \\ \frac{3}{2} & -\frac{5}{2} \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A =[(1,2),(3,4)] then A^(2)-5A equals

If [ (1, 2),(-2,-b)]+ [(a,4),(3,2)]=[(5,6),(1,0)] , then a^(2) + b^(2) is equal to

If A=[[-1,5],[-3,2]] , then A^(-1) equals

If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

15. For matrix A=[(2,3),(-4,5)] , (adjA)^T is equal to (A) [(5,-3),(4,2)] (B) [(5,4),(-3,2)] (C) [(5,3),(4,-2)] (D) [(5,-3),(-4,2)]

The plane containing the line (x-3)/(2)=(y-b)/(4)=(z-3)/(3) passes through the points (a, 1, 2), (2, 1, 4), (2, 3, 5) , then 3a+5b is equal to

If P=[(2, -2, -4),(-1, 3, 4),(1, -2, -3)], then P^(5) equals

2^(1/2)*4^(3/4) is equal to

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. If A=[(x,-2),(3,7)] and A^(-1)=[(7/34,1/17),((-3)/34,2/17)],then the v...

    Text Solution

    |

  2. Let A =[(1,-1,1),(2,1,-3),(1,1,1)] and 10B=[(4,2,2),(-5,0,alpha),(...

    Text Solution

    |

  3. If A=[(5,4),(3,2)] then A^(-1) is equal to

    Text Solution

    |

  4. The inverse of matrix A=[[2, -3], [-4, 2]] is

    Text Solution

    |

  5. If U=[((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))], then U^(-...

    Text Solution

    |

  6. If A=[{:(a, b), (c, d):}] " then " A^(-1) = .

    Text Solution

    |

  7. The invrse of the matrix [(2,0,0),(0,3,0),(0,0,4)] is

    Text Solution

    |

  8. If A=[((k)/(2),0,0),(0,(l)/(2),0),(0,0,(m)/(4))] and A^(-1)= [((1)/(2)...

    Text Solution

    |

  9. What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?

    Text Solution

    |

  10. If A=[(1,-1,0),(1,0,0),(0,0,-1)], then A^(-1) is

    Text Solution

    |

  11. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  12. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  13. The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-...

    Text Solution

    |

  14. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

    Text Solution

    |

  15. if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...

    Text Solution

    |

  16. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  17. The element in the first row and third column of the inverse of the ma...

    Text Solution

    |

  18. If A=[(0,1,2),(1,2,3),(3,1,1)], then the sum of the all the diagonal e...

    Text Solution

    |

  19. If matrix A=[(1,2),(4,3)] such that Ax =I then x=

    Text Solution

    |

  20. The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

    Text Solution

    |