Home
Class 12
MATHS
If U=[((1)/(sqrt2),(-1)/(sqrt2)),((1)/(s...

If U=`[((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))]`, then `U^(-1)` is

A

`U^(T)`

B

U

C

I

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( U \), we can follow these steps: Given: \[ U = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] ### Step 1: Calculate the Determinant of \( U \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). For our matrix \( U \): - \( a = \frac{1}{\sqrt{2}} \) - \( b = -\frac{1}{\sqrt{2}} \) - \( c = \frac{1}{\sqrt{2}} \) - \( d = \frac{1}{\sqrt{2}} \) Calculating the determinant: \[ \text{det}(U) = \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) - \left(-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) \] \[ = \frac{1}{2} + \frac{1}{2} = 1 \] ### Step 2: Check if the Inverse Exists Since the determinant \( \text{det}(U) = 1 \) (which is not equal to 0), the inverse of \( U \) exists. ### Step 3: Find the Adjoint of \( U \) For a \( 2 \times 2 \) matrix, the adjoint is found by swapping the elements on the main diagonal and changing the signs of the other two elements. The adjoint of \( U \) is: \[ \text{adj}(U) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] ### Step 4: Calculate the Inverse of \( U \) The inverse of \( U \) is given by the formula: \[ U^{-1} = \frac{1}{\text{det}(U)} \cdot \text{adj}(U) \] Substituting the values: \[ U^{-1} = \frac{1}{1} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] \[ = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \] ### Final Result Thus, the inverse of matrix \( U \) is: \[ U^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

(sqrt2-1)/(sqrt2+1)times(sqrt2-1)/(sqrt2-1)=?

The matrix A=[{:(1/sqrt2,1/sqrt2),((-1)/sqrt2,(-1)/sqrt2):}] is

1/sqrt2 is

(1-sqrt2)^(1/3)(2sqrt2+3)^(1/6)

Evaluate sqrt(2)(sqrt2+1)-sqrt(2)(1+sqrt(2))

If sqrt2=1.4142 then sqrt((sqrt2-1)/(sqrt2+1))=

2+sqrt2+1/(2+sqrt2)-1/(2-sqrt2) is equal to

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. If A=[(5,4),(3,2)] then A^(-1) is equal to

    Text Solution

    |

  2. The inverse of matrix A=[[2, -3], [-4, 2]] is

    Text Solution

    |

  3. If U=[((1)/(sqrt2),(-1)/(sqrt2)),((1)/(sqrt2),(1)/(sqrt2))], then U^(-...

    Text Solution

    |

  4. If A=[{:(a, b), (c, d):}] " then " A^(-1) = .

    Text Solution

    |

  5. The invrse of the matrix [(2,0,0),(0,3,0),(0,0,4)] is

    Text Solution

    |

  6. If A=[((k)/(2),0,0),(0,(l)/(2),0),(0,0,(m)/(4))] and A^(-1)= [((1)/(2)...

    Text Solution

    |

  7. What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?

    Text Solution

    |

  8. If A=[(1,-1,0),(1,0,0),(0,0,-1)], then A^(-1) is

    Text Solution

    |

  9. The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is

    Text Solution

    |

  10. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  11. The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-...

    Text Solution

    |

  12. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

    Text Solution

    |

  13. if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...

    Text Solution

    |

  14. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  15. The element in the first row and third column of the inverse of the ma...

    Text Solution

    |

  16. If A=[(0,1,2),(1,2,3),(3,1,1)], then the sum of the all the diagonal e...

    Text Solution

    |

  17. If matrix A=[(1,2),(4,3)] such that Ax =I then x=

    Text Solution

    |

  18. The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

    Text Solution

    |

  19. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  20. A=[{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

    Text Solution

    |