A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
MATRICES
TARGET PUBLICATION|Exercise EVALUATION TEST|13 VideosMATRICES
TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 VideosMATHEMATICAL LOGIC
TARGET PUBLICATION|Exercise EVALUATION TEST|14 VideosMHT-CET 2019 QUESTION PAPER
TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos
Similar Questions
Explore conceptually related problems
TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
- What is the inverse of A=[{:(0,0,1),(0,1,0),(1,0,0):}]?
Text Solution
|
- If A=[(1,-1,0),(1,0,0),(0,0,-1)], then A^(-1) is
Text Solution
|
- The inverse of the matrix [(1,0,0),(3,3,0),(5,2,-1)] is
Text Solution
|
- The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is
Text Solution
|
- The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-...
Text Solution
|
- If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=
Text Solution
|
- if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...
Text Solution
|
- The element of second row and third column in the inverse of [[1, 2, 1...
Text Solution
|
- The element in the first row and third column of the inverse of the ma...
Text Solution
|
- If A=[(0,1,2),(1,2,3),(3,1,1)], then the sum of the all the diagonal e...
Text Solution
|
- If matrix A=[(1,2),(4,3)] such that Ax =I then x=
Text Solution
|
- The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is
Text Solution
|
- If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=
Text Solution
|
- A=[{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to
Text Solution
|
- Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...
Text Solution
|
- If I(3) is identity matrix of order 3, then I(3)^(-1)=
Text Solution
|
- If for the matrix A ,\ A^3=I , then A^(-1)= A^2 (b) A^3 (c) A (d) non...
Text Solution
|
- If A^(2) - A + I = 0 then A^(-1) is equal to
Text Solution
|
- If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...
Text Solution
|
- If A and B are square matrices of the same order and A is non-singular...
Text Solution
|