Home
Class 12
MATHS
If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then ...

If `A=[(3,-3,4),(2,-3,4),(0,-1,1)]`, then `A^(-1)=`

A

A

B

`A^(2)`

C

`A^(3)`

D

`A^(4)`

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then show that A^(3)=A^(-1) .

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then the trace of the matrix Adj(AdjA) is

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

If A= [[3,-3,4],[2,-3,4],[0,-1,1]] then find A^(3)

Find the inverse of each of the matrices given below : A=[(3,-3,4),(2,-3,4),(0,-1,1)]

The adjoint matrix of [(3,-3,4),(2,-3,4),(0,-1,1)] is

If A = [(0,4,3),(1,-3,-3),(-1,4,4)] , then find A^(2) and hence find A^(-1)

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. The inverse matrix of A=[(0,1,2),(1,2,3),(3,1,1)] is

    Text Solution

    |

  2. The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-...

    Text Solution

    |

  3. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

    Text Solution

    |

  4. if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...

    Text Solution

    |

  5. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  6. The element in the first row and third column of the inverse of the ma...

    Text Solution

    |

  7. If A=[(0,1,2),(1,2,3),(3,1,1)], then the sum of the all the diagonal e...

    Text Solution

    |

  8. If matrix A=[(1,2),(4,3)] such that Ax =I then x=

    Text Solution

    |

  9. The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

    Text Solution

    |

  10. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  11. A=[{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

    Text Solution

    |

  12. Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...

    Text Solution

    |

  13. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  14. If for the matrix A ,\ A^3=I , then A^(-1)= A^2 (b) A^3 (c) A (d) non...

    Text Solution

    |

  15. If A^(2) - A + I = 0 then A^(-1) is equal to

    Text Solution

    |

  16. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  17. If A and B are square matrices of the same order and A is non-singular...

    Text Solution

    |

  18. Let for any matrix M,M^(-1) exists, which of the followint is not true...

    Text Solution

    |

  19. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  20. IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=

    Text Solution

    |