Home
Class 12
MATHS
if A=[a(ij)](2*2) where a(ij)={i+j , i!=...

if `A=[a_(ij)]_(2*2)` where `a_(ij)={i+j , i!=j` and `a_(ij)=i^2-2j ,i=j` then `A^-1` is equal to

A

`(1)/(9)[(4,1),(-1,2)]`

B

`(1)/(9)[(0,-3),(-3,-1)]`

C

`(1)/(9)[(0,3),(3,1)]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I

If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. The inverse of the matrix [(1,0,0),(a,1,0),(b,c,1)] is (A) [(1,0,0),(-...

    Text Solution

    |

  2. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

    Text Solution

    |

  3. if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...

    Text Solution

    |

  4. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  5. The element in the first row and third column of the inverse of the ma...

    Text Solution

    |

  6. If A=[(0,1,2),(1,2,3),(3,1,1)], then the sum of the all the diagonal e...

    Text Solution

    |

  7. If matrix A=[(1,2),(4,3)] such that Ax =I then x=

    Text Solution

    |

  8. The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

    Text Solution

    |

  9. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  10. A=[{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

    Text Solution

    |

  11. Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...

    Text Solution

    |

  12. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  13. If for the matrix A ,\ A^3=I , then A^(-1)= A^2 (b) A^3 (c) A (d) non...

    Text Solution

    |

  14. If A^(2) - A + I = 0 then A^(-1) is equal to

    Text Solution

    |

  15. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  16. If A and B are square matrices of the same order and A is non-singular...

    Text Solution

    |

  17. Let for any matrix M,M^(-1) exists, which of the followint is not true...

    Text Solution

    |

  18. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  19. IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=

    Text Solution

    |

  20. If [(1,1),(-1,1)] [(x),(y)]=[(2),(4)], then the values of x and respec...

    Text Solution

    |