Home
Class 12
MATHS
The element of second row and third colu...

The element of second row and third column in the inverse of `[[1, 2, 1], [2, 1, 0], [-1, 0, 1]]` is

A

`-2`

B

`-1`

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

The element of second row and third column in the inverse of [[1, 2, -3], [0, 1, 2], [0, 0, 1]] is

The inverse of [[0, 0, 1], [0, 1, 0], [1, 0, 0]] is

The inverse of the matrix [[1, 0, 0], [2, 1, 0], [3, 3, 1]] is

The inverse of the matrix [[1, 0, 1], [0, 2, 3], [1, 2, 1]] is

The inverse of the matrix [[2, 0, 0], [0, 1, 0], [0, 0, -1]] is

The inverse of the matrix [[3, -2, -1], [-4, 1, -1], [2, 0, 1]] is

The inverse of the matrix [[1, 2, -2], [0, -2, 1], [-1, 3, 0]] is

The inverse of the matrix [[2, 0, -1], [5, 1, 0], [0, 1, 3]] is

The inverse of the matrix [[2, 1, 3], [1, 0, 1], [1, 1, 1]] is

The inverse of the matrix [[0, 1, 2], [1, 2, 3], [3, 1, 1]] is

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. If A=[(3,-3,4),(2,-3,4),(0,-1,1)], then A^(-1)=

    Text Solution

    |

  2. if A=[a(ij)](2*2) where a(ij)={i+j , i!=j and a(ij)=i^2-2j ,i=j then A...

    Text Solution

    |

  3. The element of second row and third column in the inverse of [[1, 2, 1...

    Text Solution

    |

  4. The element in the first row and third column of the inverse of the ma...

    Text Solution

    |

  5. If A=[(0,1,2),(1,2,3),(3,1,1)], then the sum of the all the diagonal e...

    Text Solution

    |

  6. If matrix A=[(1,2),(4,3)] such that Ax =I then x=

    Text Solution

    |

  7. The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

    Text Solution

    |

  8. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  9. A=[{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

    Text Solution

    |

  10. Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...

    Text Solution

    |

  11. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  12. If for the matrix A ,\ A^3=I , then A^(-1)= A^2 (b) A^3 (c) A (d) non...

    Text Solution

    |

  13. If A^(2) - A + I = 0 then A^(-1) is equal to

    Text Solution

    |

  14. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  15. If A and B are square matrices of the same order and A is non-singular...

    Text Solution

    |

  16. Let for any matrix M,M^(-1) exists, which of the followint is not true...

    Text Solution

    |

  17. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  18. IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=

    Text Solution

    |

  19. If [(1,1),(-1,1)] [(x),(y)]=[(2),(4)], then the values of x and respec...

    Text Solution

    |

  20. If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)], then (x, y, ...

    Text Solution

    |