Home
Class 12
MATHS
If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3...

If `A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=`

A

`(1)/(27)[(1,-26),(0,27)]`

B

`(1)/(27)[(-1,26),(0,27)]`

C

`(1)/(27)[(1,-26),(0,-27)]`

D

`(1)/(27)[(-1,-26),(0,-27)]`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    TARGET PUBLICATION|Exercise EVALUATION TEST|13 Videos
  • MATRICES

    TARGET PUBLICATION|Exercise CRITICAL THINKING (2.3 Application of matrices)|5 Videos
  • MATHEMATICAL LOGIC

    TARGET PUBLICATION|Exercise EVALUATION TEST|14 Videos
  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos

Similar Questions

Explore conceptually related problems

Let A={:[(1,2,3),(0,1,0)]:}andB={:[(-1,4,3),(1,0,0)]:} Find 2A +3B.

If A={:[(3,2,7),(1,1,4),(-1,-1,0)]:},B={:[(1,0,3),(2,1,0),(0,-1,-3)]:}andC{:[(1,0,0),(0,1,0),(0,0,1)]:} , then find 2A+3B-7C.

Let A+2B={:[(3,2,-3),(1,0,4),(3,1,2)]:}and-A-B={:[(1,0,3),(-1,4,1),(3,2,1)]:} . Find A and B.

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

Inverse of [{:(2,0),(0,3):}] is [{:(1/2,0),(0,1/3):}] True or False.

If A=[{:(3,2,1),(0,-1,-2),(-3,4,2):}] , find A^(-1)

TARGET PUBLICATION-MATRICES-COMPETITIVE THINKING (Inverse off a matrix )
  1. If matrix A=[(1,2),(4,3)] such that Ax =I then x=

    Text Solution

    |

  2. The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

    Text Solution

    |

  3. If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)=

    Text Solution

    |

  4. A=[{:(0,3),(2,0):}] and A^(-1)=lambda (adj, A) then lambda is equal to

    Text Solution

    |

  5. Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...

    Text Solution

    |

  6. If I(3) is identity matrix of order 3, then I(3)^(-1)=

    Text Solution

    |

  7. If for the matrix A ,\ A^3=I , then A^(-1)= A^2 (b) A^3 (c) A (d) non...

    Text Solution

    |

  8. If A^(2) - A + I = 0 then A^(-1) is equal to

    Text Solution

    |

  9. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  10. If A and B are square matrices of the same order and A is non-singular...

    Text Solution

    |

  11. Let for any matrix M,M^(-1) exists, which of the followint is not true...

    Text Solution

    |

  12. If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equa...

    Text Solution

    |

  13. IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=

    Text Solution

    |

  14. If [(1,1),(-1,1)] [(x),(y)]=[(2),(4)], then the values of x and respec...

    Text Solution

    |

  15. If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)], then (x, y, ...

    Text Solution

    |

  16. The solutiion of (x,y,z) the equation [(-1,0,1),(-1,1,0),(0,-1,1)][(x)...

    Text Solution

    |

  17. If [{:(1,1,1),(1,-2,-2),(1,3,1):}][{:(x),(y),(z):}]=[{:(0),(3),(4):}],...

    Text Solution

    |

  18. If [(1,3,3),(1,4,4),(1,3,4)][(x),(y),(z)]=[(12),(15),(13)] , then the ...

    Text Solution

    |

  19. Let M be a 3xx3 matrix satisfying M[0 1 0]=M[1-1 0]=[1 1-1],a n dM[1 1...

    Text Solution

    |

  20. Let A = [(1,0,0), (2,1,0), (3,2,1)], and U1, U2 and U3 are columns of ...

    Text Solution

    |