Home
Class 12
MATHS
If bar(OA)=overset(^)i+3overset(^)j-2ove...

If `bar(OA)=overset(^)i+3overset(^)j-2overset(^)k and bar(OB)=3overset(^)i+overset(^)j-2overset(^)k,` then the vectors `bar(OC)` which bisects `angleAOB` is equal to

A

`overset(^)i-overset(^)j-overset(^)k`

B

`2(overset(^)i+overset(^)j+overset(^)k)`

C

`-overset(^)i+overset(^)j-overset(^)k`

D

`2(overset(^)i+overset(^)j-overset(^)k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \( \overrightarrow{OC} \) that bisects the angle \( AOB \), we can follow these steps: ### Step 1: Identify the given vectors We are given: \[ \overrightarrow{OA} = \hat{i} + 3\hat{j} - 2\hat{k} \] \[ \overrightarrow{OB} = 3\hat{i} + \hat{j} - 2\hat{k} \] ### Step 2: Use the formula for the angle bisector The position vector of the point \( C \) that bisects the angle \( AOB \) can be found using the formula: \[ \overrightarrow{OC} = \frac{|\overrightarrow{OB}| \cdot \overrightarrow{OA} + |\overrightarrow{OA}| \cdot \overrightarrow{OB}}{|\overrightarrow{OA}| + |\overrightarrow{OB}|} \] where \( |\overrightarrow{OA}| \) and \( |\overrightarrow{OB}| \) are the magnitudes of the vectors \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \) respectively. ### Step 3: Calculate the magnitudes of the vectors First, we calculate the magnitudes: \[ |\overrightarrow{OA}| = \sqrt{(1)^2 + (3)^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] \[ |\overrightarrow{OB}| = \sqrt{(3)^2 + (1)^2 + (-2)^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] ### Step 4: Substitute the values into the angle bisector formula Now substituting the values into the angle bisector formula: \[ \overrightarrow{OC} = \frac{|\overrightarrow{OB}| \cdot \overrightarrow{OA} + |\overrightarrow{OA}| \cdot \overrightarrow{OB}}{|\overrightarrow{OA}| + |\overrightarrow{OB}|} \] \[ = \frac{\sqrt{14} \cdot (\hat{i} + 3\hat{j} - 2\hat{k}) + \sqrt{14} \cdot (3\hat{i} + \hat{j} - 2\hat{k})}{\sqrt{14} + \sqrt{14}} \] \[ = \frac{\sqrt{14}(\hat{i} + 3\hat{j} - 2\hat{k} + 3\hat{i} + \hat{j} - 2\hat{k})}{2\sqrt{14}} \] \[ = \frac{\sqrt{14}(4\hat{i} + 4\hat{j} - 4\hat{k})}{2\sqrt{14}} \] \[ = \frac{4(\hat{i} + \hat{j} - \hat{k})}{2} \] \[ = 2(\hat{i} + \hat{j} - \hat{k}) \] ### Step 5: Final answer Thus, the vector \( \overrightarrow{OC} \) that bisects the angle \( AOB \) is: \[ \overrightarrow{OC} = 2\hat{i} + 2\hat{j} - 2\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    TARGET PUBLICATION|Exercise Competitive Thinking|79 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos

Similar Questions

Explore conceptually related problems

If the vectors 3overset(^)i+overset(^)j-5overset(^)k and aoverset(^)i+boverset(^)j-15overset(^)k are collinear, if

If the vectors 3overset(^)i+2overset(^)j-overset(^)k and 6overset(^)i-4xoverset(^)j+yoverset(^)k are parallel, then the value of x and y will be

If bara=2overset(^)i-3overset(^)j+5overset(^)k,barb=3overset(^)i-4overset(^)j+5overset(^)k and barc=5overset(^)i-3overset(^)j-2overset(^)k , then the volume of the parallelopiped with co-terminus edges bara+barb,barb+barc,barc+bara is

[overset(^)ioverset(^)koverset(^)j]+[overset(^)koverset(^)joverset(^)i]+[overset(^)joverset(^)koverset(^)i]

The vectors bar(AB)=3overset(^)i+5overset(^)j+4overset(^)k and bar(AC)=5overset(^)i-5overset(^)j+2overset(^)k are sides of a triangle ABC The length of the median through A is

A(bara)=3overset(^)i+2overset(^)j,B(barb)=5overset(^)i+3overset(^)j+2overset(^)k,C(barc)=-9overset(^)i+6overset(^)j-3overset(^)k are vectors of triangle ABC, if AD is the angle bisector of angle BAC, then the co-ordinates of the point D are

If the vectors overset(^)i+2overset(^)k,overset(^)j+overset(^)k and lambda overset(^)i+mu overset(^)j collinear, then

If the vectors 5overset(^)i-xoverset(^)j+3overset(^)k and -3overset(^)i+2overset(^)j-yoverset(^)k are parallel, the value of x and y respectively are

Let bara=2overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i+2overset(^)j-overset(^)k and a unit vectors barc be coplanar. If barc is prependicular to bara , then barc=

If bara=overset(^)i+overset(^)j-2overset(^)k,barb=2overset(^)i-overset(^)j+overset(^)k and barc =3overset(^)i+overset(^)k and barc=mbara+nbarb then m+n

TARGET PUBLICATION-VECTORS-Critical Thinking
  1. A and B are two points. The position vector of A is 6b-2a. A point P ...

    Text Solution

    |

  2. If bar(a),bar(b),bar(c)are the position vectors of the points A, B, C ...

    Text Solution

    |

  3. If bar(OA)=overset(^)i+3overset(^)j-2overset(^)k and bar(OB)=3overset(...

    Text Solution

    |

  4. bara,barb are position vectors of points A and B. If P divides AB in t...

    Text Solution

    |

  5. If 2bara+barb=3barc, then A divides BC in the ratio

    Text Solution

    |

  6. In DeltaABC, P is the mid point of BC,Q divides CA internally in the r...

    Text Solution

    |

  7. If overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + ...

    Text Solution

    |

  8. If the points (1,1,2),(2,1,p),(1,0,3) and (2,2,0) are co-planar then ...

    Text Solution

    |

  9. If the points A, B, C and D with position vectors overset(^)i+overset(...

    Text Solution

    |

  10. If aoverset(^)i+overset(^)j+overset(^)k,overset(^)i-boverset(^)j+overs...

    Text Solution

    |

  11. If the given vectors (-bc,b^2+bc,c^2+bc)(a^2+ac,-ac,c^2+ac) and (a^2+a...

    Text Solution

    |

  12. If bara,barb,barc are non-zero, non collinear vectors, then the vector...

    Text Solution

    |

  13. Given vectors bara,barb,barc such that bara.(barbxxbarc)=lambda!=0 the...

    Text Solution

    |

  14. For any three vectors bara,barb and barc,(bara-barb)[(barb+barc)xx(bar...

    Text Solution

    |

  15. If bara,barb and barc are three non-coplanar vectors, then : (bara + b...

    Text Solution

    |

  16. If bar r=l(bar b xx bar c)+m(bar c xx bar a)+n(bar a xx bar b) and [...

    Text Solution

    |

  17. The volume of parallelopiped with vector bara+2barb-barc,bara-barb and...

    Text Solution

    |

  18. If the volume of parallelopiped with coterminus edges -poverset(^)i+5k...

    Text Solution

    |

  19. If the volumes of tetrahearon where vertices (1,2,0),(2,0,4),(-1,2,0) ...

    Text Solution

    |

  20. If D is the mid -point of side AB of DeltaABC, then bar(AB) + bar(BC)...

    Text Solution

    |