Home
Class 12
MATHS
In a right angled triangle ABC, the hypo...

In a right angled triangle ABC, the hypotenuse AB =p, then `vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB)` is equal to:

A

`3p^2`

B

`(3p^2)/(2)`

C

`p^2`

D

`p^2/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    TARGET PUBLICATION|Exercise Evaluation Test|18 Videos
  • VECTORS

    TARGET PUBLICATION|Exercise Critical Thinking|35 Videos
  • TRIGONOMETRIC FUNCTIONS

    TARGET PUBLICATION|Exercise Evaluation Test|34 Videos

Similar Questions

Explore conceptually related problems

If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(AB).vec(AC)+vec(BC).vec(BA)+vec(CA).vec(CB) equal to ?

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

In a right angled triangle ABC.the hypotenuse AB=p,then AB.AC+BC.BA+CA.CB

If in a right-angled triangle ABC, the hypotenuse AB=p, then vec AB.AC+vec BC*vec BA+vec CA.vec CB is equal to 2p^(2) b.(p^(2))/(2) c.p^(2) d.none of these

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

ABCDE is a pentagon prove that vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

In a triangle ABC, if taken in order, consider the following statements: 1. vec(AB)+vec(BC)+vec(CA)=vec(0) 2. vec(AB)+vec(BC)-vec(CA)=vec(0) 3. vec(AB)-vec(BC)+vec(CA)=vec(0) 4. vec(BA)-vec(BC)+vec(CA)=vec(0) How many of the above statements are correct?

TARGET PUBLICATION-VECTORS-Competitive Thinking
  1. If bara=(1)/(sqrt10)(3overset(^)i+overset(^)k),barb=1/7(2overset(^)i+3...

    Text Solution

    |

  2. If barp=(barbxxbarc)/(bara" "barb" "barc),barq=(barcxxbara)/(bara" "ba...

    Text Solution

    |

  3. If vecu, vecv, vecw are three non-coplanar vectors, the (vecu+vecv-vec...

    Text Solution

    |

  4. If bara,barb,barc are three non-coplanar vectors and barp,barq,barr ar...

    Text Solution

    |

  5. If a, b and c are non-coplanar vectors and d=lambdaa+mub+nuc, then lam...

    Text Solution

    |

  6. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  7. If bara,barb,barc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  8. If the vectors 2overset(^)i-3overset(^)j,overset(^)i+overset(^)j-overs...

    Text Solution

    |

  9. The volumes of the parallelopiped whose edges are represented by bara=...

    Text Solution

    |

  10. If the volume of the tetrahedron formed by the coterminus edges bara,b...

    Text Solution

    |

  11. The volume of a parallelopiped whose edges are represented by -12bar ...

    Text Solution

    |

  12. If the three co-terminous edges of a paralleloP1ped are represented by...

    Text Solution

    |

  13. If bara=2overset(^)i-3overset(^)j+5overset(^)k,barb=3overset(^)i-4over...

    Text Solution

    |

  14. The volume of a tetrahedron (in cubic units) whose vertices are 4overs...

    Text Solution

    |

  15. The vectors bar(AB)=3overset(^)i+5overset(^)j+4overset(^)k and bar(AC)...

    Text Solution

    |

  16. A(4,3,5),B(0,-2,2) and C(3,2,1) are three points. The coordinates of t...

    Text Solution

    |

  17. If 4veci+7vecj+8veck,2veci+3vecj+4veck and 2veci+5vecj+7vecj are the p...

    Text Solution

    |

  18. consider the points A,B,C and D with position vector 7veci-4vecj+7veck...

    Text Solution

    |

  19. In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec...

    Text Solution

    |

  20. Let bara=2overset(^)i+overset(^)j+overset(^)k,barb=overset(^)i+2overse...

    Text Solution

    |