Home
Class 12
MATHS
int0^2sqrt((2+x)/(2-x))dx=...

`int_0^2sqrt((2+x)/(2-x))dx=`

A

`pi+2`

B

`pi+3/2`

C

`pi+1`

D

`pi-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^2 \sqrt{\frac{2+x}{2-x}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int_0^2 \sqrt{\frac{2+x}{2-x}} \, dx \] ### Step 2: Multiply and Divide by \(\sqrt{2+x}\) We can simplify the integrand by multiplying and dividing by \(\sqrt{2+x}\): \[ I = \int_0^2 \frac{\sqrt{(2+x)(2+x)}}{\sqrt{(2-x)(2+x)}} \, dx = \int_0^2 \frac{2+x}{\sqrt{(2-x)(2+x)}} \, dx \] ### Step 3: Substitute \( x = 2 \sin \theta \) To simplify the integral further, we can use the substitution \( x = 2 \sin \theta \). Then, the differential \( dx \) becomes: \[ dx = 2 \cos \theta \, d\theta \] We also need to change the limits of integration: - When \( x = 0 \), \( \sin \theta = 0 \) implies \( \theta = 0 \). - When \( x = 2 \), \( \sin \theta = 1 \) implies \( \theta = \frac{\pi}{2} \). ### Step 4: Substitute into the Integral Substituting \( x = 2 \sin \theta \) into the integral gives: \[ I = \int_0^{\frac{\pi}{2}} \frac{2 + 2 \sin \theta}{\sqrt{(2 - 2\sin\theta)(2 + 2\sin\theta)}} \cdot 2 \cos \theta \, d\theta \] This simplifies to: \[ I = 2 \int_0^{\frac{\pi}{2}} \frac{1 + \sin \theta}{\sqrt{2(1 - \sin \theta)(1 + \sin \theta)}} \cdot 2 \cos \theta \, d\theta \] ### Step 5: Simplify the Denominator The denominator can be simplified: \[ \sqrt{2(1 - \sin \theta)(1 + \sin \theta)} = \sqrt{2(1 - \sin^2 \theta)} = \sqrt{2 \cos^2 \theta} = \sqrt{2} \cos \theta \] Thus, we have: \[ I = 2 \int_0^{\frac{\pi}{2}} \frac{1 + \sin \theta}{\sqrt{2} \cos \theta} \cdot 2 \cos \theta \, d\theta = \frac{4}{\sqrt{2}} \int_0^{\frac{\pi}{2}} (1 + \sin \theta) \, d\theta \] ### Step 6: Evaluate the Integral Now we can evaluate the integral: \[ \int_0^{\frac{\pi}{2}} (1 + \sin \theta) \, d\theta = \int_0^{\frac{\pi}{2}} 1 \, d\theta + \int_0^{\frac{\pi}{2}} \sin \theta \, d\theta \] Calculating these: - \(\int_0^{\frac{\pi}{2}} 1 \, d\theta = \frac{\pi}{2}\) - \(\int_0^{\frac{\pi}{2}} \sin \theta \, d\theta = -\cos \theta \bigg|_0^{\frac{\pi}{2}} = 0 - (-1) = 1\) Thus: \[ \int_0^{\frac{\pi}{2}} (1 + \sin \theta) \, d\theta = \frac{\pi}{2} + 1 \] ### Step 7: Final Calculation Substituting back, we find: \[ I = \frac{4}{\sqrt{2}} \left( \frac{\pi}{2} + 1 \right) = 2\sqrt{2} \left( \frac{\pi}{2} + 1 \right) \] ### Final Result Thus, the final result of the integral is: \[ I = \pi + 2 \]
Promotional Banner

Topper's Solved these Questions

  • MHT-CET 2019 QUESTION PAPER

    TARGET PUBLICATION|Exercise Binomial Distribution|1 Videos
  • MODEL QUESTION PAPER-II

    TARGET PUBLICATION|Exercise MCQs|49 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)sqrt((2+x)/(2-x))dx is equal to

Evaluate the following improper integrals : (a) int_(-3)^(3)(x^(2)dx)/(sqrt(9-x^(2))), (b) int_(0)^(2)sqrt((2+x)/(2-x))dx.

int_(0)^(2) sqrt((2+x)/(2-x)) dx

int _(0)^(2) sqrt((2+x)/(2-x)) dx is equal to

Evaluate int_0^sqrt(2)sqrt(2-x^2)dx

int_(0)^(sqrt(2))[x^(2)]dx

int_0^2 x sqrt (x+2)dx

int_(0)^(2) sqrt(2-x)dx .

Evaluate: (i) int_0^4 1/(sqrt(x^2+2x+3))dx (ii) int_0^a1/(sqrt(a x-x^2))dx

Evaluate: int_0^2 sqrt(4-x^2) dx

TARGET PUBLICATION-MODEL QUESTION PAPER-I-MCQs
  1. The value of c in (0,2) satisfying the Mean Value theorem for the func...

    Text Solution

    |

  2. If phi(x)=log5(log3x),then phi'(e)=

    Text Solution

    |

  3. int0^2sqrt((2+x)/(2-x))dx=

    Text Solution

    |

  4. The matrix [[lamda,1,0],[0,2,3],[0,0,lamda]]is invertible.

    Text Solution

    |

  5. The angle between the line 2hati+3hatj+4hatk and the plane overliner.(...

    Text Solution

    |

  6. If normal the curve y=f(x) is parallel to X-axis, then correct stateme...

    Text Solution

    |

  7. The position vectors of the point A, B, C and D are 3hati-2hatj -hatk,...

    Text Solution

    |

  8. IF a coin is tossed twice and X is the number of tails, then E(X)=

    Text Solution

    |

  9. If tn=1/4(n+2)(n+3) for n=1, 2 ,3,.... then 1/t1+1/t2+1/t3+....+1/(t(...

    Text Solution

    |

  10. The rate of change of surface area of a sphere of radius r when the ra...

    Text Solution

    |

  11. If the position vectors of the points A,B,C are bara,barb and 3bara-2b...

    Text Solution

    |

  12. int(sin^3 2x)/(cos^5 2x)dx=

    Text Solution

    |

  13. IF A=[[x,1],[1,0]] and A^2=I, then A^(-1) is equal to

    Text Solution

    |

  14. The order of the differential equation of the family of parabolas whos...

    Text Solution

    |

  15. What are the direction cosines of the y-axis ?

    Text Solution

    |

  16. IF y=cos^2((3x)/2)-sin^2((3x)/2),then(d^2y)/(dx^2)is

    Text Solution

    |

  17. A fair coin is tossed n times. if the probability that head occurs 6 t...

    Text Solution

    |

  18. The probability that at least one of the events Aa n dB occurs is 0.6....

    Text Solution

    |

  19. (cos9^@+sin9^@)/(cos9^@-sim9^@)= (a) tan 54^@ (b) tan 36^@ (d) None of...

    Text Solution

    |

  20. e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)

    Text Solution

    |