Home
Class 12
MATHS
In case of strictly decreasing function,...

In case of strictly decreasing function, the derivative is

A

negative

B

zero

C

positive

D

either positive or zero

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    TARGET PUBLICATION|Exercise CRITICAL THINKING|129 Videos
  • APPLICATIONS OF DERIVATIVES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|161 Videos
  • APPICATIONS OF DEFINITE INTEGRAL

    TARGET PUBLICATION|Exercise EVALUATION TEST|18 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos

Similar Questions

Explore conceptually related problems

f is a strictly decreasing function with range [a,b], its domain is

Let f, g are differentiable function such that g(x)=f(x)-x is strictly increasing function, then the function F(x)=f(x)-x+x^(3) is (A) strictly increasing AA x in R (B) strictly decreasing AA x in R (C) strictly decreasing on (-oo,(1)/(sqrt(3))) and strictly increasing on ((1)/(sqrt(3)),oo) (D) strictly increasing on (-oo,(1)/(sqrt(3))) and strictly decreasing on ((1)/(sqrt(3)),oo)

Show that f(x) = e^(-x) is a strictly decreasing function on Rgt

Show that the function f(x) = -2x + 7 is a strictly decreasing function on R

Show that f(x) = e^(1//x) is a strictly decreasing function for all x gt 0

Show that the function f(x)=-3x+12 is strictly decreasing function on R .

Show that the function f(x) = 3 - 2x is strictly decreasing function on R.

Show that the function f(x) =- 5x + 2 is strictly decreasing function on R.

Let f and g be two differentiable functions defined on an interval I such that f(x)>=0 and g(x)<= 0 for all x in I and f is strictly decreasing on I while g is strictly increasing on I then (A) the product function fg is strictly increasing on I (B) the product function fg is strictly decreasing on I (C) fog(x) is monotonically increasing on I (D) fog (x) is monotonically decreasing on I

Strictly increasing functions and strictly decreasing functions

TARGET PUBLICATION-APPLICATIONS OF DERIVATIVES-EVALUATION TEST
  1. In case of strictly decreasing function, the derivative is

    Text Solution

    |

  2. If 27a+9b+3c+d=0 then the equation 4ax^(3)-3bx^(2)+2cx+0 has at leat ...

    Text Solution

    |

  3. If the curve y=x^(2)+bx +c touches the line y = x at the point (1,1),...

    Text Solution

    |

  4. A tangent to the parabola y^2=8x makes an angle of 45^0 with the strai...

    Text Solution

    |

  5. The greatest value of the function f(x)=tan^(- 1)x-1/2logx in [1/(sqrt...

    Text Solution

    |

  6. IF alpha+beta=pi/2, then cosalpha cos beta has a maximum value at beta...

    Text Solution

    |

  7. Prove that the segment of the tangent to the hyperbola y = (c )/(x) w...

    Text Solution

    |

  8. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  9. The maximum value of f(x)=sinx(1+cosx) is

    Text Solution

    |

  10. The minimum value of f(x)=sin^4x+cos^4x,0lexlepi/2 is

    Text Solution

    |

  11. The minimum value of 2^(x^2-3)^(3+27) is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  12. If the function f(x)=3 cos |x| -6 ax +b increases for all x in R then ...

    Text Solution

    |

  13. The minimum value of a^2sec^2x+b^2cosec^2x,0ltaltb,is

    Text Solution

    |

  14. The function y=(ax+b)/(x-1)(x-4) has turning point at P(2,-1) Then fin...

    Text Solution

    |

  15. if 0ltalphaltbetaltpi/2 , then

    Text Solution

    |

  16. The two curves y=3^x and y=5^xintersect at an angle

    Text Solution

    |

  17. If alpha and beta (alpha lt beta) are two different real rootsof the e...

    Text Solution

    |

  18. The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

    Text Solution

    |

  19. If the function f(x)=x^3-12ax^2+36a^2x-4(agt0) attains its maximum a...

    Text Solution

    |

  20. Verify Rolle's theorem for each of the following functions : f(x) = ...

    Text Solution

    |

  21. The abscissa of the point on the curve ay^2 = x^3, the normal at whic...

    Text Solution

    |