Home
Class 12
MATHS
The maximum value of f(x)=sinx(1+cosx) i...

The maximum value of `f(x)=sinx(1+cosx)` is

A

`(3sqrt3)/4`

B

`(3sqrt3)/2`

C

`3sqrt3`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \sin x (1 + \cos x) \), we will follow these steps: ### Step 1: Differentiate the function We start by differentiating \( f(x) \) with respect to \( x \). \[ f(x) = \sin x (1 + \cos x) \] Using the product rule, where if \( u = \sin x \) and \( v = 1 + \cos x \), we have: \[ f'(x) = u'v + uv' \] Calculating \( u' \) and \( v' \): - \( u' = \cos x \) - \( v' = -\sin x \) Now substituting back into the product rule: \[ f'(x) = \cos x (1 + \cos x) + \sin x (-\sin x) \] This simplifies to: \[ f'(x) = \cos x (1 + \cos x) - \sin^2 x \] ### Step 2: Set the derivative to zero To find the critical points, we set \( f'(x) = 0 \): \[ \cos x (1 + \cos x) - \sin^2 x = 0 \] Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can rewrite the equation: \[ \cos x (1 + \cos x) - (1 - \cos^2 x) = 0 \] Expanding and rearranging gives: \[ \cos x + \cos^2 x - 1 + \cos^2 x = 0 \] This simplifies to: \[ 2\cos^2 x + \cos x - 1 = 0 \] ### Step 3: Solve the quadratic equation We can solve this quadratic equation using the quadratic formula \( \cos x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = 1, c = -1 \): \[ \cos x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ \cos x = \frac{-1 \pm \sqrt{1 + 8}}{4} \] \[ \cos x = \frac{-1 \pm 3}{4} \] This gives us two solutions: 1. \( \cos x = \frac{2}{4} = \frac{1}{2} \) (which gives \( x = \frac{\pi}{3} \)) 2. \( \cos x = \frac{-4}{4} = -1 \) (which gives \( x = \pi \)) ### Step 4: Determine the nature of critical points To determine if these points are maxima or minima, we can use the second derivative test. We need to find \( f''(x) \). From our earlier work, we have: \[ f'(x) = \cos x (1 + \cos x) - \sin^2 x \] Differentiating again: \[ f''(x) = -\sin x (1 + \cos x) - \cos^2 x + \sin x \cos x \] ### Step 5: Evaluate the second derivative at critical points 1. For \( x = \frac{\pi}{3} \): - \( f''\left(\frac{\pi}{3}\right) \) will be evaluated. - If \( f''\left(\frac{\pi}{3}\right) < 0 \), then \( x = \frac{\pi}{3} \) is a maximum. 2. For \( x = \pi \): - Similarly evaluate \( f''(\pi) \). ### Step 6: Calculate the maximum value Finally, we compute the value of \( f(x) \) at the maximum point \( x = \frac{\pi}{3} \): \[ f\left(\frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) \left(1 + \cos\left(\frac{\pi}{3}\right)\right) \] \[ = \frac{\sqrt{3}}{2} \left(1 + \frac{1}{2}\right) = \frac{\sqrt{3}}{2} \cdot \frac{3}{2} = \frac{3\sqrt{3}}{4} \] Thus, the maximum value of \( f(x) \) is: \[ \boxed{\frac{3\sqrt{3}}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DERIVATIVES

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|161 Videos
  • APPICATIONS OF DEFINITE INTEGRAL

    TARGET PUBLICATION|Exercise EVALUATION TEST|18 Videos
  • BINOMIAL DISTRIBUTION

    TARGET PUBLICATION|Exercise EVALUTION TEST|12 Videos

Similar Questions

Explore conceptually related problems

Maximum value of f(x)=sinx+cosx is :

The maximum values of sinx(1+cosx) will be at the

The maximum value of f(x)=(sin2x)/(sinx+cosx) in the interval (0, (pi)/(2)) is

Show that The maximum value of sinx. cosx in R is 1/2

The maximum value of function f(x)=sinx(1+cosx),xiniR is

What is the maximum value of sinx+cosx

Maximum value of cosx (sinx +cos x) is equal to :

The maximum value of the function 4 cosx+3 sinx+20

The maximum value of (3cosx+4sinx) (3sinx-4cosx) for every x in R is

The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(x)+C, C being the constant of integration. Then the maximum value of y=f(x^(2)), AA x in R is equal to

TARGET PUBLICATION-APPLICATIONS OF DERIVATIVES-EVALUATION TEST
  1. If 27a+9b+3c+d=0 then the equation 4ax^(3)-3bx^(2)+2cx+0 has at leat ...

    Text Solution

    |

  2. If the curve y=x^(2)+bx +c touches the line y = x at the point (1,1),...

    Text Solution

    |

  3. A tangent to the parabola y^2=8x makes an angle of 45^0 with the strai...

    Text Solution

    |

  4. The greatest value of the function f(x)=tan^(- 1)x-1/2logx in [1/(sqrt...

    Text Solution

    |

  5. IF alpha+beta=pi/2, then cosalpha cos beta has a maximum value at beta...

    Text Solution

    |

  6. Prove that the segment of the tangent to the hyperbola y = (c )/(x) w...

    Text Solution

    |

  7. If 2a+3b+6c=0, then prove that at least one root of the equation a x^2...

    Text Solution

    |

  8. The maximum value of f(x)=sinx(1+cosx) is

    Text Solution

    |

  9. The minimum value of f(x)=sin^4x+cos^4x,0lexlepi/2 is

    Text Solution

    |

  10. The minimum value of 2^(x^2-3)^(3+27) is 2^(27) (b) 2 (c) 1 (d) ...

    Text Solution

    |

  11. If the function f(x)=3 cos |x| -6 ax +b increases for all x in R then ...

    Text Solution

    |

  12. The minimum value of a^2sec^2x+b^2cosec^2x,0ltaltb,is

    Text Solution

    |

  13. The function y=(ax+b)/(x-1)(x-4) has turning point at P(2,-1) Then fin...

    Text Solution

    |

  14. if 0ltalphaltbetaltpi/2 , then

    Text Solution

    |

  15. The two curves y=3^x and y=5^xintersect at an angle

    Text Solution

    |

  16. If alpha and beta (alpha lt beta) are two different real rootsof the e...

    Text Solution

    |

  17. The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

    Text Solution

    |

  18. If the function f(x)=x^3-12ax^2+36a^2x-4(agt0) attains its maximum a...

    Text Solution

    |

  19. Verify Rolle's theorem for each of the following functions : f(x) = ...

    Text Solution

    |

  20. The abscissa of the point on the curve ay^2 = x^3, the normal at whic...

    Text Solution

    |