Home
Class 12
MATHS
int(1)^(3)(x-1)(x-2)(x-3)dx=...

`int_(1)^(3)(x-1)(x-2)(x-3)dx=`

A

`3`

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{3} (x-1)(x-2)(x-3) \, dx \), we can use the property of definite integrals that states: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] ### Step 1: Apply the property Here, \( a = 1 \) and \( b = 3 \). Therefore, \( a + b = 4 \). We can rewrite the integral as: \[ I = \int_{1}^{3} (x-1)(x-2)(x-3) \, dx = \int_{1}^{3} (4-x-1)(4-x-2)(4-x-3) \, dx \] ### Step 2: Simplify the expression Now, we simplify the expression inside the integral: \[ 4 - x - 1 = 3 - x, \quad 4 - x - 2 = 2 - x, \quad 4 - x - 3 = 1 - x \] So, we can rewrite the integral as: \[ I = \int_{1}^{3} (3-x)(2-x)(1-x) \, dx \] ### Step 3: Expand the product Next, we expand the product \( (3-x)(2-x)(1-x) \): \[ (3-x)(2-x) = 6 - 5x + x^2 \] Now, multiply this result by \( (1-x) \): \[ (6 - 5x + x^2)(1 - x) = 6 - 6x - 5x + 5x^2 + x^2 - x^3 = 6 - 11x + 6x^2 - x^3 \] ### Step 4: Integrate term by term Now we can integrate each term from 1 to 3: \[ I = \int_{1}^{3} (6 - 11x + 6x^2 - x^3) \, dx \] Calculating the integral term by term: \[ = \left[ 6x - \frac{11x^2}{2} + 2x^3 - \frac{x^4}{4} \right]_{1}^{3} \] ### Step 5: Evaluate at the limits Now we evaluate at the limits: 1. For \( x = 3 \): \[ = 6(3) - \frac{11(3^2)}{2} + 2(3^3) - \frac{(3^4)}{4} \] \[ = 18 - \frac{99}{2} + 54 - \frac{81}{4} \] \[ = 18 + 54 - \frac{99}{2} - \frac{81}{4} \] \[ = 72 - \frac{198}{4} - \frac{81}{4} = 72 - \frac{279}{4} = \frac{288 - 279}{4} = \frac{9}{4} \] 2. For \( x = 1 \): \[ = 6(1) - \frac{11(1^2)}{2} + 2(1^3) - \frac{(1^4)}{4} \] \[ = 6 - \frac{11}{2} + 2 - \frac{1}{4} \] \[ = 8 - \frac{11}{2} - \frac{1}{4} = \frac{32 - 22 - 1}{4} = \frac{9}{4} \] ### Step 6: Combine results Now, we combine the results: \[ I = \left( \frac{9}{4} - \frac{9}{4} \right) = 0 \] ### Final Result Thus, the value of the integral is: \[ \int_{1}^{3} (x-1)(x-2)(x-3) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx The value of I^(-1) .

Let I=int_(1)^(3)|(x-1)(x-2)(x-3)|dx. The value of I^(-1) .

int_(1)^(3)(2x+1)dx

int(3x-1)/((x-1)(x-2)(x-3))dx

int(3x)/((x-1)(x-2)(x-3))dx

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx

Evaluate: int_(1)^(3)(1)/(x^(2)(x+1))dx

int_(0)^(3)(1)/(x^(2)-3x+2)dx

int_(1)^(2)(3x)/(9x^(2)-1)dx

TARGET PUBLICATION-DEFINITE INTEGRALS-EVALUATIO TEST
  1. int(1)^(3)(x-1)(x-2)(x-3)dx=

    Text Solution

    |

  2. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  3. For every integer n, int(n)^(n+1)f(x)dx=n^(2), then the value of int(0...

    Text Solution

    |

  4. If f(x)+f(3-x)=0,then int(0)^(3)1/(1+2^(f(x)))dx=

    Text Solution

    |

  5. int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

    Text Solution

    |

  6. Let I=int0^n[x]dx,n > 0, where [ ] is G.I.F.,

    Text Solution

    |

  7. If In = int0^(pi/2) (sin^2 nx)/(sin^2 x) dx, then

    Text Solution

    |

  8. The value of the integral intalpha^beta 1/(sqrt((x-alpha)(beta-x)))dx

    Text Solution

    |

  9. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  10. If m and n are positive integers and f(m,n)=int(0)^(1)x^(n-1)(logx)^(m...

    Text Solution

    |

  11. The least value of the function phi(x)=int((7pi)/6)^(x)(4sint+3cost)dt...

    Text Solution

    |

  12. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  13. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  14. If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x...

    Text Solution

    |

  15. lim(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n...

    Text Solution

    |

  16. lim(n->oo)sum(n=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

    Text Solution

    |

  17. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  18. int(0)^(100pi)(|sin^(3)x|+|cos^(3)x|)dx=

    Text Solution

    |

  19. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  20. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  21. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |