Home
Class 12
MATHS
int(pi//6)^(pi//4)cosec 2x dx=...

`int_(pi//6)^(pi//4)cosec 2x dx=`

A

`log3`

B

`logsqrt(3)`

C

`log9`

D

`1/2logsqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc(2x) \, dx \), we will use a substitution method. Here are the steps to solve the integral: ### Step 1: Substitution Let \( t = 2x \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{2} \] ### Step 2: Change the limits of integration When \( x = \frac{\pi}{6} \): \[ t = 2 \times \frac{\pi}{6} = \frac{\pi}{3} \] When \( x = \frac{\pi}{4} \): \[ t = 2 \times \frac{\pi}{4} = \frac{\pi}{2} \] ### Step 3: Rewrite the integral Now, we can rewrite the integral in terms of \( t \): \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc(2x) \, dx = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc(t) \cdot \frac{dt}{2} \] This simplifies to: \[ \frac{1}{2} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \csc(t) \, dt \] ### Step 4: Integrate \( \csc(t) \) The integral of \( \csc(t) \) is: \[ \int \csc(t) \, dt = -\ln |\csc(t) + \cot(t)| + C \] Thus, we have: \[ \frac{1}{2} \left[ -\ln |\csc(t) + \cot(t)| \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}} \] ### Step 5: Evaluate the integral at the limits Now we evaluate the limits: 1. At \( t = \frac{\pi}{2} \): \[ \csc\left(\frac{\pi}{2}\right) = 1, \quad \cot\left(\frac{\pi}{2}\right) = 0 \quad \Rightarrow \quad \csc\left(\frac{\pi}{2}\right) + \cot\left(\frac{\pi}{2}\right) = 1 \] Thus, \( -\ln(1) = 0 \). 2. At \( t = \frac{\pi}{3} \): \[ \csc\left(\frac{\pi}{3}\right) = \frac{2}{\sqrt{3}}, \quad \cot\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}} \quad \Rightarrow \quad \csc\left(\frac{\pi}{3}\right) + \cot\left(\frac{\pi}{3}\right) = \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] Thus, \( -\ln\left(\sqrt{3}\right) = -\frac{1}{2} \ln(3) \). ### Step 6: Combine the results Putting it all together: \[ \frac{1}{2} \left[ 0 - \left(-\frac{1}{2} \ln(3)\right) \right] = \frac{1}{2} \cdot \frac{1}{2} \ln(3) = \frac{1}{4} \ln(3) \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \csc(2x) \, dx = \frac{1}{4} \ln(3) \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

(i) int_0^(pi//4) sec x dx (ii) int_(pi//6)^(pi//4) cosec x dx

int_(pi//6)^(pi//3)cos^(2)x dx=

int_(pi//6)^(pi//2) cos x dx

int_(-pi//4)^(pi//4)cosec^(2)xdx

int_(pi//6)^(pi//2) (" cosec x cot x")/(1+" cosec "^(2) x)dx

int_(pi//6)^(pi//2) ("cosec "x cot x)/(1+ "cosec"^(2)x)

The value of int _(pi//4) ^(pi//3) cosec x d (sin x ) for 0 lt x lt pi //2 is

int_(-pi//2)^(pi//2)cos^(6)x dx=

TARGET PUBLICATION-DEFINITE INTEGRALS-EVALUATIO TEST
  1. int(pi//6)^(pi//4)cosec 2x dx=

    Text Solution

    |

  2. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  3. For every integer n, int(n)^(n+1)f(x)dx=n^(2), then the value of int(0...

    Text Solution

    |

  4. If f(x)+f(3-x)=0,then int(0)^(3)1/(1+2^(f(x)))dx=

    Text Solution

    |

  5. int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

    Text Solution

    |

  6. Let I=int0^n[x]dx,n > 0, where [ ] is G.I.F.,

    Text Solution

    |

  7. If In = int0^(pi/2) (sin^2 nx)/(sin^2 x) dx, then

    Text Solution

    |

  8. The value of the integral intalpha^beta 1/(sqrt((x-alpha)(beta-x)))dx

    Text Solution

    |

  9. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  10. If m and n are positive integers and f(m,n)=int(0)^(1)x^(n-1)(logx)^(m...

    Text Solution

    |

  11. The least value of the function phi(x)=int((7pi)/6)^(x)(4sint+3cost)dt...

    Text Solution

    |

  12. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  13. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  14. If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x...

    Text Solution

    |

  15. lim(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n...

    Text Solution

    |

  16. lim(n->oo)sum(n=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

    Text Solution

    |

  17. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  18. int(0)^(100pi)(|sin^(3)x|+|cos^(3)x|)dx=

    Text Solution

    |

  19. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  20. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  21. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |