Home
Class 12
MATHS
int(2)^(3)(dx)/(x^(2)-x)=...

`int_(2)^(3)(dx)/(x^(2)-x)=`

A

`log(2/3)`

B

`log(1/4)`

C

`log(4/3)`

D

`log(8/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2}^{3} \frac{dx}{x^2 - x} \), we will follow these steps: ### Step 1: Factor the Denominator The first step is to factor the denominator \( x^2 - x \): \[ x^2 - x = x(x - 1) \] Thus, we can rewrite the integral as: \[ \int_{2}^{3} \frac{dx}{x(x - 1)} \] ### Step 2: Partial Fraction Decomposition Next, we will use partial fraction decomposition to express \( \frac{1}{x(x - 1)} \) in a simpler form: \[ \frac{1}{x(x - 1)} = \frac{A}{x} + \frac{B}{x - 1} \] Multiplying through by the denominator \( x(x - 1) \) gives: \[ 1 = A(x - 1) + Bx \] Expanding this, we have: \[ 1 = Ax - A + Bx \] Combining like terms: \[ 1 = (A + B)x - A \] Setting up the system of equations: 1. \( A + B = 0 \) 2. \( -A = 1 \) From the second equation, we find \( A = -1 \). Substituting \( A \) into the first equation gives \( -1 + B = 0 \), thus \( B = 1 \). So, we can rewrite the integral: \[ \frac{1}{x(x - 1)} = \frac{-1}{x} + \frac{1}{x - 1} \] ### Step 3: Rewrite the Integral Now we can rewrite the integral: \[ \int_{2}^{3} \left( \frac{-1}{x} + \frac{1}{x - 1} \right) dx \] This can be split into two separate integrals: \[ \int_{2}^{3} \frac{-1}{x} \, dx + \int_{2}^{3} \frac{1}{x - 1} \, dx \] ### Step 4: Evaluate the Integrals Now we evaluate each integral separately. 1. For \( \int \frac{-1}{x} \, dx \): \[ \int \frac{-1}{x} \, dx = -\ln |x| \] Evaluating from 2 to 3: \[ -\ln |3| + \ln |2| = \ln \left( \frac{2}{3} \right) \] 2. For \( \int \frac{1}{x - 1} \, dx \): \[ \int \frac{1}{x - 1} \, dx = \ln |x - 1| \] Evaluating from 2 to 3: \[ \ln |3 - 1| - \ln |2 - 1| = \ln 2 - \ln 1 = \ln 2 \] ### Step 5: Combine the Results Now we combine the results of both integrals: \[ \int_{2}^{3} \frac{dx}{x^2 - x} = \ln \left( \frac{2}{3} \right) + \ln 2 = \ln \left( \frac{2}{3} \cdot 2 \right) = \ln \left( \frac{4}{3} \right) \] ### Final Answer Thus, the value of the integral is: \[ \int_{2}^{3} \frac{dx}{x^2 - x} = \ln \left( \frac{4}{3} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(3)(dx)/(x^(2)-1)

find int_(2)^(3)(dx)/(2x)

int_(2)^(3)(x^(2)dx)/(2x^(2)-10x+25)

int_(0)^(3)(1)/(x^(2)-3x+2)dx

int_(2)^(3)x^(2)dx

int_(2)^(4)(x^(2)-3x+2)dx

int_(0)^(2)(x^(3)dx)/((x^(2)+1)^((3)/(2)))

int_(0)^(2)(x^(3)dx)/((x^(2)+1)^(3//2)) is equal to

int((2x^(2)+3)dx)/((x^(2)-1)(x^(2)+4))=

TARGET PUBLICATION-DEFINITE INTEGRALS-EVALUATIO TEST
  1. int(2)^(3)(dx)/(x^(2)-x)=

    Text Solution

    |

  2. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  3. For every integer n, int(n)^(n+1)f(x)dx=n^(2), then the value of int(0...

    Text Solution

    |

  4. If f(x)+f(3-x)=0,then int(0)^(3)1/(1+2^(f(x)))dx=

    Text Solution

    |

  5. int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

    Text Solution

    |

  6. Let I=int0^n[x]dx,n > 0, where [ ] is G.I.F.,

    Text Solution

    |

  7. If In = int0^(pi/2) (sin^2 nx)/(sin^2 x) dx, then

    Text Solution

    |

  8. The value of the integral intalpha^beta 1/(sqrt((x-alpha)(beta-x)))dx

    Text Solution

    |

  9. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  10. If m and n are positive integers and f(m,n)=int(0)^(1)x^(n-1)(logx)^(m...

    Text Solution

    |

  11. The least value of the function phi(x)=int((7pi)/6)^(x)(4sint+3cost)dt...

    Text Solution

    |

  12. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  13. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  14. If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x...

    Text Solution

    |

  15. lim(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n...

    Text Solution

    |

  16. lim(n->oo)sum(n=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

    Text Solution

    |

  17. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  18. int(0)^(100pi)(|sin^(3)x|+|cos^(3)x|)dx=

    Text Solution

    |

  19. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  20. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  21. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |