Home
Class 12
MATHS
int(0)^(a)f(x)dx=...

`int_(0)^(a)f(x)dx=`

A

`int_(0)^(a)f(a+x)dx`

B

`int_(0)^(a)f(2a+x)dx`

C

`int_(0)^(a)f(x-a)dx`

D

`int_(0)^(a)f(a-x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{a} f(x) \, dx \) and prove the property, we will follow the steps outlined in the video transcript. ### Step-by-Step Solution: 1. **Define the Integral**: \[ I = \int_{0}^{a} f(x) \, dx \] 2. **Substitute \( x \) with \( a - t \)**: We will perform a substitution where \( x = a - t \). Then, the differential \( dx \) becomes: \[ dx = -dt \] 3. **Change the Limits of Integration**: When \( x = 0 \): \[ t = a \] When \( x = a \): \[ t = 0 \] Thus, the limits change from \( x = 0 \) to \( x = a \) into \( t = a \) to \( t = 0 \). 4. **Rewrite the Integral**: Substitute \( x \) and \( dx \) in the integral: \[ I = \int_{a}^{0} f(a - t)(-dt) = \int_{0}^{a} f(a - t) \, dt \] 5. **Rename the Variable**: Since the variable of integration is a dummy variable, we can replace \( t \) with \( x \): \[ I = \int_{0}^{a} f(a - x) \, dx \] 6. **Conclusion**: We have shown that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] This indicates a property of definite integrals. ### Final Result: The integral \( \int_{0}^{a} f(x) \, dx \) is equal to \( \int_{0}^{a} f(a - x) \, dx \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise CRITICAL THINKING|115 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx int_(0)^(a)f(x)dx=p" then " int_(0)^(a)f(x)g(x)dx is

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If int_(0)^(a//2)f(x)dx=p," then "int_(0)^(a)f(x)dx is equal to

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

If f(2-x)=f(2+x),f(4+x)=f(4-x) and int_(0)^(2)f(x)dx=5 then int_(0)^(50)f(x)dx is

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If f(a+x)=f(x), then int_(0)^(na)f(x)dx is equal to n in N

If f(x)=f(4-x), g(x)+g(4-x)=3 and int_(0)^(4)f(x)dx=2 , then : int_(0)^(4)f(x)g(x)dx=

TARGET PUBLICATION-DEFINITE INTEGRALS-EVALUATIO TEST
  1. int(0)^(a)f(x)dx=

    Text Solution

    |

  2. int0^1log(1+x)/(1+x^2)dx

    Text Solution

    |

  3. For every integer n, int(n)^(n+1)f(x)dx=n^(2), then the value of int(0...

    Text Solution

    |

  4. If f(x)+f(3-x)=0,then int(0)^(3)1/(1+2^(f(x)))dx=

    Text Solution

    |

  5. int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

    Text Solution

    |

  6. Let I=int0^n[x]dx,n > 0, where [ ] is G.I.F.,

    Text Solution

    |

  7. If In = int0^(pi/2) (sin^2 nx)/(sin^2 x) dx, then

    Text Solution

    |

  8. The value of the integral intalpha^beta 1/(sqrt((x-alpha)(beta-x)))dx

    Text Solution

    |

  9. Let f(x)=(e^(x)+1)/(e^(x)-1) and int(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1)...

    Text Solution

    |

  10. If m and n are positive integers and f(m,n)=int(0)^(1)x^(n-1)(logx)^(m...

    Text Solution

    |

  11. The least value of the function phi(x)=int((7pi)/6)^(x)(4sint+3cost)dt...

    Text Solution

    |

  12. Prove that int(a)^(b)f(x)dx=(b-a)int(0)^(1)f((b-a)x+a)dx

    Text Solution

    |

  13. The integral int0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest ...

    Text Solution

    |

  14. If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x...

    Text Solution

    |

  15. lim(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n...

    Text Solution

    |

  16. lim(n->oo)sum(n=1)^n(sqrt(n))/(sqrt(r)(3sqrt(r)+4sqrt(n))^2)

    Text Solution

    |

  17. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  18. int(0)^(100pi)(|sin^(3)x|+|cos^(3)x|)dx=

    Text Solution

    |

  19. I1=int0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I2=int0^(2pi)cos^6xdx ,I3=in...

    Text Solution

    |

  20. overset(2pi) underset(0)int(xsin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx,n gt 0...

    Text Solution

    |

  21. The equation int(-pi/4)^(pi/4){a|sinx|+(bsinx)/(1+cos^2x)+c}dx=0 where...

    Text Solution

    |