Home
Class 12
MATHS
int(0)^(pi//4) tan^(6)x sec^(2)x dx=...

`int_(0)^(pi//4) tan^(6)x sec^(2)x dx=`

A

`1/7`

B

`2/7`

C

`1`

D

`3/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \tan^6 x \sec^2 x \, dx \), we will use a substitution method. ### Step-by-Step Solution: 1. **Substitution**: Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \). This means \( dx = \frac{dt}{\sec^2 x} \). 2. **Change of Limits**: When \( x = 0 \), \( t = \tan(0) = 0 \). When \( x = \frac{\pi}{4} \), \( t = \tan\left(\frac{\pi}{4}\right) = 1 \). Therefore, the limits of integration change from \( x = 0 \) to \( x = \frac{\pi}{4} \) into \( t = 0 \) to \( t = 1 \). 3. **Rewrite the Integral**: The integral now becomes: \[ I = \int_{0}^{1} t^6 \, dt \] 4. **Integrate**: Now we can integrate \( t^6 \): \[ I = \int_{0}^{1} t^6 \, dt = \left[ \frac{t^{6+1}}{6+1} \right]_{0}^{1} = \left[ \frac{t^7}{7} \right]_{0}^{1} \] 5. **Evaluate the Limits**: Now we evaluate at the limits: \[ I = \frac{1^7}{7} - \frac{0^7}{7} = \frac{1}{7} - 0 = \frac{1}{7} \] ### Final Answer: Thus, the value of the integral is: \[ I = \frac{1}{7} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|148 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • DEFINITE INTEGRALS

    TARGET PUBLICATION|Exercise EVALUATIO TEST|30 Videos
  • CONTINUITY

    TARGET PUBLICATION|Exercise Evaluation Test|10 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan x dx

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

int_(0)^(pi//4)(tan^(4)x + tan^(2)x)dx=

(i) int_(0)^(pi//4) e^(tanx) . sec^(2) x dx (ii) int_(0)^(pi//4) (sin (cos 2x))/(" cosec " 2x)dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

int_(0)^( pi/4)e^(tan x)*sec^(2)xdx

int_(0)^( pi/4)tan x sec^(4)xdx

Evaluate : int_(0)^((pi)/(4)) sec^(2) x dx

int_(0)^(pi//4)x sec^(2)x " " dx =